ISRO

Previous Year Paper Scientist Mechanical 2013

A concentrated load P is applied at the end of a cantilever as shown in Fig. The cross section of the beam is a square of side 'a' with a hole of dia 'a/2'. The deflection at the tip of the cantilever is given by

- (a) $\frac{3P}{E} \frac{L^3}{a^4} \qquad \frac{1024P}{(256-3\pi)E} \frac{L^3}{a^4} \qquad \frac{1024P}{(256-\frac{\pi}{64})E} \frac{L^3}{a^4} \qquad \frac{256P}{(1024-3\pi)E} \frac{L^3}{a^4}$
- A cantilever beam is subjected to a UDL. The cross section of the beam is a H-Section placed as shown in Fig. The bending stress distribution across the cross section will be

A thick cylinder of inner dia 'D', wall thickness t_2 and length 'L' is sealed at its both ends with caps. The thickness of the cap is t_1 . Allowable tensile yield stress = σ_y and allowable shear stress = τ_y . A gas is pumped into this cylinder at pressure 'p'. The cap will yield in shear at circumference of diameter 'D' when the gas pressure applied is more than

A solid block 'A' weighing 'Q' kg is resting on a flat floor. A smooth cylinder 'B' weighing 'P' kg. is placed between the solid A and the vertical wall as shown in fig. The friction between the 9 cylinder, wall and the block A is negligible. The co-efficient of friction between the block A and floor is μ . The minimum weight P required to disturb the block A is Floor (a) (b) (c) (d) μQ μ<mark>Q Tanθ</mark> (1–μ Tan θ) Cosθ $Q(1-Tan \theta)$ μ**Q** Cosθ μ Ταπθ A hydraulic jack is used to compress a spring as shown in fig. Stiffness of spring is 10⁵ N/m. By applying a pressure 'p' in the hydraulic cylinder, the spring gets compressed by 10mm. The 10 cross sectional area of the piston is 25 cm². The applied pressure 'p is Spring piston

	(a) 4 x 10 ⁵ Pascals	(b) 40 Pascals	(c) 250 Pascals	(d) 25 Pascals					
11	A small plastic boat loaded with pieces of steel rods is floating in a bath tub. If the cargo is dumped into the water, allowing the boat to float empty, the water level in the tub will								
	(a) Rise	(b) Fall	(c) Remains the same	(d) Rise and then fall					
12									
	(a) higher	(b) lower	(c) same	(d) unpredictable					
13	Froude number is sign	ificant in:							
		h projectile and jet prop							
	(b) Full immersion or	completely enclosed flov	v, as <mark>with pipes, air craf</mark> t	s wings, nozzles, etc.					
	1 .	-	here there is a surface d	iscontinuity, gravity forces					
	and wave making effe	ct, as with snip's nulls							
	(d) All of these								
14	The purpose of surge	tank in a pipe line is to							
- -	(a) smoothen the flow		(b) minimize friction lo	sses in pipe					
	(c) prevent occurrence		(d) relieve pressure du						
1 5.	Head loss in turbulen	t flow in a pipe	DE III						
	(a) varies directly as v	elocity	(b) varies inversely as:	square of velocity					
	(c) varies approximat	ely as square of velocity	(d) varies inversely as	velocity					
16.	from the bottom of t		s suddenly opened and	of diameter 0.1m at 0.3m coefficient of discharge of					
Ŀ	(a) 69.37 N	(b) 67.39 N	(c) 63.79 N	(d) 65.39 N					
17.									
	(a) N/4	(b) N/2	(c) N	(d) 2N					
18	where the diameter upstream of the redu weight of 5 kN/m ³ .	is reduced from 20 cm acer is 150 kPa . The fl	n to 10 cm. The pressuluid has a vapour pressulects, the maximum disch	ducer in a horizontal pipe, are in the 20 cm pipe just re of 50 kPa and a specific arge (in m³/sec) that can					

	(a) 0.05	(b) 0.16	(c) 0.27	(d) 0.38	3
,		of a floating body, under	the influence of gra	vity alone, which o	of the following is
\dashv	(a) Metacentre s	hould be below the cent	re of gravity		
	(b) Metacentre s	hould be above the centr	e of gravity		
	(c) Metacentre a	nd centre of gravity must	: lie on the same ho	orizontal line	
\dashv	(d) Metacentre a	nd centre of gravity must	t lie on the same v	ertical line	
0	(elevation: 10m) velocity is 2 m/s	of diameter 200mm car is 50 kPa . At section ec . Density of water is f the following is true?	n S2 (elevation: 12	m) the pressure	is zu kra anu
	(a) Flow is from	n S1 to S2 and head lo			nead loss is 0.53m
		m S1 to S2 and head lo	ss is (d) Flow is fro	om 52 to S1 and h	ead loss is 1.06m
21.	The 2-D flow wi	th velocity $\overline{v} = (x + 2y +$	2) I + (4 – y) j is		
21.			(b) compres	ssible and not irro	itational
21.	(a) compressible	th velocity $\overline{v} = (x + 2y + 2$	(b) compres	ssible and not irroressible and not in	itational rrotational
	(a) compressible (c) incompressible A venturimeter	e and irrotational	(b) compres (d) incompres eter is used to methe pressure difference	ressible and not in neasure the veloc rence between the ses, the flow velo	rrotational city of water in a ne pipe and throa
22.	(a) compressible (c) incompressible A venturimeter horizontal pipe sections is foun (a) 0.2 m/sec A room conta (the refrigera electric resist that the refri continuously loss from the	e and irrotational cole and irrotational r of 20mm throat diam of 40mm diameter. If d to be 30 kPa, then, neg (b) 1.0 m/sec lins 60 kg of air at 100 ance heater, and a 50 gerator, the TV, the f but the air temperaturoom that day is	(b) compressions (d) incompressions (d) incompressions (et al., and the electricity when the compressions (et al., and the electricity in the room results (et al., and the electricity in the room results (et al., and the electricity in the room results (et al., and the electricity in the room results (et al., and the electricity in the room results).	neasure the velocities the ses, the flow velocities (d) 2 me room has a 25 m running), a 12 a cold winter diric resistance he emains constant.	rrotational city of water in a ne pipe and throa city is 2.0 m/sec 50-W refrigerato 0-W TV, a 1-kV ay, it is observe eater are runnin . The rate of hea
22.	(a) compressible (c) incompressible A venturimeter horizontal pipe sections is foun (a) 0.2 m/sec A room conta (the refrigera electric resist that the refri continuously loss from the (a) 3312 kJ/h Efficiency of	e and irrotational cole and irrotational r of 20mm throat diam of 40mm diameter. If d to be 30 kPa, then, neg (b) 1.0 m/sec lins 60 kg of air at 100 ance heater, and a 50 gerator, the TV, the f but the air temperaturoom that day is	(b) compressions (d) incompressions (d) incompressions (d) incompressions (d) incompressions (c) 1.4 m/sc (c)	neasure the velocities the resistence between the ses, the flow velocities (d) 2 me room has a 25 me running), a 12 a cold winter deric resistance he emains constant.	rrotational city of water in the pipe and throating is 2.0 m/sec 60-W refrigerator in the pipe and throating is 2.0 m/sec 60-W TV, a 1-kV ay, it is observe eater are running. The rate of heater in (d) 2952 kJ/h

25.	An adiabatic heat exc kg/s by hot air at 90° is 20°C, the exit temp	C entering also at 1	ate of 5 kg/s. If the e	°C enterin exit temper	g at a rate of 5 rature of hot air			
	(a) 27°C	(b) 32°C	(c) 5	2°C	(d) 85°C			
26.	For given combined thermal conductivity given as	radiative and conv k,*Critical thickne	ective heat transfer o	ylinder an	d sphere is			
	(a) $\frac{k}{h_t}$ and $\frac{k}{h_t^2}$	(b) $\frac{k}{h_t}$ and $\frac{2k}{h_t}$	(c) $\frac{2k}{h_t}$ and $\frac{k}{h_t^2}$	(d) $\frac{2k}{h_t}$ a	$\frac{k}{h_l}$			
27.	Match the following				-0			
	P:Compressible	flow U: Reyn	olds number		25			
	O: Free surface		elt number		9			
	R: Boundary la		er <mark>number</mark>)			
	S: Pipe flow	X: Frou	de number					
	T: Heat convect		h number					
		Z: Skin	friction coefficient					
	(a) P-U; Q-X; R-V; S	S-Z; T-W	(b) P-W; Q-X; R	-Z; S-U; T	-V -			
	(c) P-Y; Q-W; R-Z;	S-U; T-X	(d) P-Y; Q-W; R	-Z; S-U; T	-V			
28.	A spherical thermomeasurement of tem on the bead surface material are k = 20 initially at 30°C is reach 298°C, is	perature of a gas s e is 400 W/m ² K. W/mK, C = 400 J placed in a hot str	tream. The convection Thermo-physical pools (kg K and r = 8500 ream of 300°C, the	ve heat tra roperties kg/m³. If t time taker	nsfer co-efficient of thermocouple he thermocouple he by the bead to			
<u> </u>	a) 2.35 s	b) 4.9 s	(c)	14.7 s	d) 29.4 s			
29.	Two insulating materials of thermal conductivity K and 2K are available for lagging a pipe carrying a hot fluid. If the radial thickness of each material is the same.							
	(a) material with hig one with lower ther			ed for the i	nner layer and			
	(b) material with lov	ver thermal condu	ctivity should be use	d for the in	ner layer and			
	one with higher the			ala ava				
-	(c) it is immaterial i							
<u> </u>	(a) it is not possible	to juage unless nu	merical values of din	nensions ai	e given.			

30.	The definition of 1 K as per the international				
	(a) 1/100th the difference between normal bewater.				
	(b) 1/273.15th the normal freezing point of w	vater			
	(c) 100 times the difference between the tripl	le point of water and the normal freezing			
	point of water.				
	(d) 1/273.16th of the triple point of water.				
	For a perfect gas match list I with list II:	W * 4 WW			
31.	<u>List I</u>	<u>List II</u>			
	(A) Isobaric thermal expansion	(1) 0			
	coefficient	(2) ∞			
	(B) Isothermal compressibility	(3) 1/v			
	(C) Isentropic compressibility (D) Joule – Thomson coefficient	(3) 1/V (4) 1/T			
	(D) Jouie – I nomson coefficient	(5) 1/p			
	•	$\begin{array}{c c} (3) 1/p \\ \hline (6) 1/\gamma p \end{array}$			
		(6) 11 /12			
32.	(a) A-4,B-3,C-2, D-1 (b) A-1,B-2,C-4, D-6 For a given heat flow and for the same thick material will be maximum for	(c) A-4,B-5,C-6, D-1 (d) A-3,B-4,C-6, D-5			
32.	For a given heat flow and for the same thick material will be maximum for				
32.	For a given heat flow and for the same thick material will be maximum for (a) copper (b) steel (c) gl	ass-wool (d) refractory brick			
	For a given heat flow and for the same thick material will be maximum for (a) copper (b) steel (c) gl Select statements from List II matching the	ass-wool (d) refractory brick processes in List I. Enter your answer as			
	For a given heat flow and for the same thick material will be maximum for (a) copper (b) steel (c) gl Select statements from List II matching the A, B if the correct choice for (1) is (A) and the correct choice for (1) is (B) and the correct choice for (1) i	ass-wool (d) refractory brick processes in List I. Enter your answer as hat for (2) is (B)			
	For a given heat flow and for the same thick material will be maximum for (a) copper (b) steel (c) gl Select statements from List II matching the A, B if the correct choice for (1) is (A) and the List I	ass-wool (d) refractory brick processes in List I. Enter your answer as hat for (2) is (B) List II			
	For a given heat flow and for the same thick material will be maximum for (a) copper (b) steel (c) gl Select statements from List II matching the A, B if the correct choice for (1) is (A) and the List I (A) Fourier number (1) Surface	ass-wool (d) refractory brick processes in List I. Enter your answer as hat for (2) is (B) List II e tension			
	For a given heat flow and for the same thick material will be maximum for (a) copper (b) steel (c) gl Select statements from List II matching the A, B if the correct choice for (1) is (A) and t List I (A) Fourier number (1) Surface (B) Weber number (2) Forced	ass-wool (d) refractory brick processes in List I. Enter your answer as hat for (2) is (B) List II e tension convection			
	For a given heat flow and for the same thick material will be maximum for (a) copper (b) steel (c) gl Select statements from List II matching the A, B if the correct choice for (1) is (A) and t List I (A) Fourier number (1) Surface (B) Weber number (2) Forced (C) Grashoff number (3) Natura	ass-wool (d) refractory brick processes in List I. Enter your answer as hat for (2) is (B) List II e tension convection			
	For a given heat flow and for the same thick material will be maximum for (a) copper (b) steel (c) gl Select statements from List II matching the A, B if the correct choice for (1) is (A) and t List I (A) Fourier number (1) Surface (B) Weber number (2) Forced (C) Grashoff number (3) Natura (D) Schmidt number (4) Radiation	cness, the temperature drop across the ass-wool (d) refractory brick processes in List I. Enter your answer as hat for (2) is (B) List II e tension convection convection ion			
	For a given heat flow and for the same thick material will be maximum for (a) copper (b) steel (c) gl Select statements from List II matching the A, B if the correct choice for (1) is (A) and the List I (A) Fourier number (1) Surface (B) Weber number (2) Forced (C) Grashoff number (3) Natura (D) Schmidt number (4) Radiati (5) Transic	(d) refractory brick processes in List I. Enter your answer as hat for (2) is (B) List II te tension convection convection ion ent heat conduction			
	For a given heat flow and for the same thick material will be maximum for (a) copper (b) steel (c) gl Select statements from List II matching the A, B if the correct choice for (1) is (A) and t List I (A) Fourier number (1) Surface (B) Weber number (2) Forced (C) Grashoff number (3) Natura (D) Schmidt number (4) Radiation	(d) refractory brick processes in List I. Enter your answer as hat for (2) is (B) List II te tension convection convection ion ent heat conduction			
33.	For a given heat flow and for the same thick material will be maximum for (a) copper (b) steel (c) gl Select statements from List II matching the A, B if the correct choice for (1) is (A) and the List I (A) Fourier number (B) Weber number (C) Grashoff number (C) Forced (C) Grashoff number (D) Schmidt number (E) Transic (E) Mass december (E) Mass dece	(d) refractory brick processes in List I. Enter your answer as hat for (2) is (B) List II te tension convection convection ion ent heat conduction			
	For a given heat flow and for the same thick material will be maximum for (a) copper (b) steel (c) gl Select statements from List II matching the A, B if the correct choice for (1) is (A) and t List I (A) Fourier number (1) Surface (B) Weber number (2) Forced (C) Grashoff number (3) Natura (5) Transic (6) Mass d	cness, the temperature drop across the ass-wool (d) refractory brick processes in List I. Enter your answer as hat for (2) is (B) List II e tension convection convection ion ent heat conduction liffusion (d) A-5, B-2, C-3, D-1 (d) A-5, B-1, C-3, D-4			
33.	For a given heat flow and for the same thick material will be maximum for (a) copper (b) steel (c) gl Select statements from List II matching the A, B if the correct choice for (1) is (A) and t List I (A) Fourier number (1) Surface (B) Weber number (2) Forced (C) Grashoff number (3) Natura (D) Schmidt number (4) Radiati (5) Transic (6) Mass d (a) A-2, B-1, C-3, D-5 (b) A-5, B-1, C-3, D-6 (c)	cness, the temperature drop across the ass-wool (d) refractory brick processes in List I. Enter your answer as hat for (2) is (B) List II e tension convection convection ion ent heat conduction liffusion (d) A-5, B-2, C-3, D-1 (d) A-5, B-1, C-3, D-4			

35.	A system undergoes a state change from 1 to 2. According the second law of thermodynamics for the process to be feasible, the entropy change, S2 – S1 of the system						
	(a) is positive or zero	(b) is	negative or zero				
	(c) is zero		an be positive, negat	ive or zero			
36.							
	(a) a b c d	(b) b c a d	(c) dabc	(d) d c b a			
37.	For the same inlet as Temperature Differe	ence (LMTD) is		65			
	(a) greater for paral	lel flow heat excha	ng <mark>er than for counte</mark>	r flow heat exchanger.			
				el fl <mark>o</mark> w heat exchanger.			
	(c) same for both pa			3./			
	(d) dependent on the	properties of the	ilui <mark>ds.</mark>				
38.	A positive value of J	oule-Thomson coe	fficient of a fluid me	ans			
	(a) temperature dro	ps during throttli <mark>n</mark>	g (b) temperature threttling	remains constant during			
	(c) temperature rise	s dur <mark>in</mark> g throttlin <mark>g</mark>	(d) none of these	: <u>/</u>			
39.	the heat source is			t 30°C. The temperature of			
	(a) 100 °C	(b) 433 °C	(c) 737 °C	(d) 1010 °C			
40.	An engine operates both to be equally e			nd T and T and 400 K. For			
	(a) 700 K	(b) 600 K	(c) 750 K	(d) 650 K			
41	In a heat exchange	r, the hot liquid er	iters with a tempera	iture of 180°C and leaves at C. The capacity ratio of the			
	(a) 0.25	(b) 0.40	(c) 0.50	(d) 0.55			
-	(a) 0.23	(0) 0.40	(0) 0.50	(u) 0.55			

42	A system of masses rotating in differ	ent parallel planes is in dynamic balance if –
	(a) Resultant force is zero	(b) resultant couple is zero
	(c) resultant force is numerically	(d) resultant force and the resultant couple,
	equal to resultant couple	both are equal to zero.
	equal to resultant couple	both are equal to zero.
43	A torsion bar with a spring constant constant for each portion would be	'k' is cut into 'n' equal lengths. The spring
	(a) nk	(b) k ⁿ
-	(c) k/n	(d) k ^{1/n}
44	Logarithmic decrement of a damped of the spring is doubled and mass is system will be equal to	d single degree of freedom system is δ. If stiffness made half, then logarithmic decrement of the new
	(a) 1/2δ	(b) δ
	(c) 28	(d) ¼ δ
45		(b) smaller than friction angle (d) such as to give maximum efficiency in lifting
46	bending moment at any section 'x' (nd support condition in a beam of length 'L', (O < x <l) <math="" by="" given="" is="">M(x) = Ax - Bx^2, where A cc in the beam will be zero at 'x' equal to (c) $2A/B$ (d) A^2/B</l)>
47	If A is $\begin{bmatrix} 8 & 5 \\ 7 & 6 \end{bmatrix}$ then $\begin{bmatrix} A^{121} - A^{120} \end{bmatrix}$	
	(a) 0 (b) 1	(c) 120 (d) 121
48	If A is Square Matrix of order 3, th	hen product of A and its transpose is
. \	(a) Unit Matrix	(b) Zero Matrix
	(c) Identity Matrix	(d) Symmetric Matrix
49	The Matrix A= $\begin{bmatrix} 0 & -4 & 1 \\ 4 & 0 & -5 \\ -1 & 5 & 0 \end{bmatrix}$	is

	(a) Orthogonal Matrix		(b) Skew Symmetric					
	(c) Symmetric		(d) Idempotent					
50	Vector a= 3i + 2j - 6k, vector b= 4i - 3j + k, angle between above vectors is							
	(a) 90°	(b) 0°	(c) 45°	(d) 60°				
51	If the probability for A to fail an examination is 0.2 and that for B is 0.3, then probability that either A of B fail is							
	(a) 0.5	(b) 0.06	(c) 0.44	(d) 0.1				
52	Area bounded by the pa	arabola $2y=x^2$ and the line $x=$	y-4 is equal to					
	(a) 4.5	(b) 9	(c) 18	(d) 36				
53		selected at random will contai		63 /				
	(a) 3/7	(b) 7/2	(e) 7/3	(d) 2/7				
54	$\lim_{x \to 0} \frac{x^2 + x - \sin x}{x^2}$		QC,					
	(a) 0	(b) ∞	(c) 1	(d) None of these				
55	left to right. They are s kg and 5 kg. If the coo Q after impact and whe	traveling horizontally with veloceparated by a distance of 15 mefficient of restitution is 0.7 who (seconds) and where (metre Q. The corresponding answers	. The mass of the colority of the colority of the velocity or the colority of the colories of	ne objects are 3 (m/s) of P and ct with respect				
	a) 7.6, 5.4, 2.1, 15	b) 8, 6, 2.5, 7.5 c) 7.6, 6.2,	7.5, 45 d) N	lone of these				
56	The cross section of a co	ompound bar 1 m long is as sh y 80° C determine the stresses						
	steel	copper 40 — copper 60	5 10 5					

	$E_{ss} = 2 \times 10^5 \text{ N/mm}^2$, $E_c = 1 \times 10^5 \text{ N/mm}^2$,	$A_{ss} = 600 \text{ mm}^2, A_c = 200 \text{ mm}^2$
	a) $\sigma_c = 20$ (Compressive),	b) $\sigma_{c} = 30$ (Compressive),
	$\sigma_{ss} = 30$ (Tensile)	σ _{SS} = 20 (Tensile)
	c) $\sigma_{c} = 30$ (Tensile),	d) $\sigma_{c=30 \text{ (Tensile)}}$,
	$\sigma_{ss} = 20$ (Compressive)	$\sigma_{ss} = 20$ (Tensile)
57	A short column of external diameter D an compressive load P acting with an eccentrextreme fibre is zero then the eccentricity	ricity 'e'. If the stresses at one of the
		e +
	(a) $\frac{D^2 + d^2}{8\pi D}$ (b) $\frac{D^2 + d^2}{8D}$	(c) $\frac{D^2 - d^2}{8D}$ (d) $\frac{D^3 - d^3}{8D^2}$
58	The number of degrees of freedom in the	3 link mechanism shown below is given by

(d) 0 (b) 2 (c) 3 (a) 1 The equation of motion for a damped vibration is given by $6\ddot{x} + 9\dot{x} + 27x = 0$. The 59 damping factor will be (d) 0.75 (a) 0.25 (b) 0.5 (c) 0.35 A block brake with 400 mm diameter is used to brake a torque of 100 Nm as shown in the figure. If the coefficient friction is 0.25 at the brake surface what is the value of 60 force F to be applied at the end of the lever. 50 200 225 (d) 1000 N (b) 579.4 N (c) 439.4 N (a) 559.4 N In the gear train of 1:10 as shown in the figure the pinion transmits 250 kw at 1800 rpm. What is the tangential load on the gear tooth 61 Gear2 Gear1 $N_2 = 140$ teeth $N_1 = 14$ teeth 660 (a) 221 kN (b) 22.1 kN (c) 25.1 kN (d) 251 kN

	, <u></u>		* *					
62	Spring back in m	retal forming depends	on .					
	(a) Modulus of E	(b) Load Ap	(b) Load Applied					
	(c) Strain Rate	,	(d) None of t					
63	Which of the foll	owing processes induc	ce more stress in t	he metal ?				
	(a) Hot rolling	(b) Forging	(c) Swaging			(d) Turning		
64	The essential ing	redient of any harden	ed steel is					
	(a) Austenite	(b) Pearlite	(c) Martensi	te		(d) Cementite		
65	Following is a pr	ocess used to form po	wder metal to sha	pe		es		
	(a) Sintering (l	o) Explosive Compacti	ing (c) Isostatic	Molding	(d) A	All of these		
66	diameter. A unifor	of 5.0 mm thickness is curm spark gap of 0.5 mm If the feed rate of the warm of min) will be	on both sides of th	e wire is ma	intai	ned during		
	(a) 150	(b) 200	(A) (A)	(c) 300		(d) 400		
67 ·	Diamond cutting	tools are <mark>no</mark> t recommend	ded for machining	of ferrous m	etals	due to		
	hardness o	b) chemical affinity f tool material with ron	(c) Poor tool toughness		ctivi	hermal ty of work		
68	During the execut tool motion will b	tion of a CNC part prog e	ram block N020 G	02 X45.0 Y2:	5.0 R	5.0 the type of		
				(c) Linear Interpolat		(d) Rapid Feed		
69	Projection Welding is a							
	(a) Continuous Welding Process	ot welding	(c) Arc Welding Process		Process used joining round s			
70		turning operation with a of 0.25, if the cutting spe						

	(a) half	(b) sixt	een times	(c) T	wo T	imes	(d) Eight	times
						•	<u> </u>	
71	An oxidising process used for aluminium and magnesium articles is called							
_	(a) galvanising	7	(b) Anodis	sing	(c) Pa	rkerisin	g (d) She	radising
	<u> </u>	·						
72.	One of the cha	racteristi	cs of Polyme	er is				
	(a) high Temp	erature	(b) High M		al	(c)High	Elongation	(d) Low
	Stability		Strengt	<u>:h</u>				Hardness
73	Usually Mater	ials with	the followin	g crystal	struc	ture fail	in ductile mo	ode
	(a) FCC	(b) B	CC	(c) HO	P	(d	None of these
74	Work hardeni			oy by				es
	(a) Removing structure	Internal	defects in th	ne crysta	l			location density
	(c) Decreasing	the grain	size of the	alloy				tice resistance
						to dis	location mot	ion
75	An Aluminium of solid cylinder of vertical wall at position withouthan	diameter point 'A' a	D and height nd hinged at I	'h/2' as sh point B cn ition (axis	nown the f	h/2	It is kept inclir object stays in to the floor), or	ed touching to a this inclined
			111160	,		`		· · · · · · · · · · · · · · · · · · ·
		10 D/9h)				π/2-S	in ⁻¹ (10 D/h)	
	c) π/2 - T	an ⁻¹ (10 D	/9h)	-	d) Tan ⁻¹ (20 D/9h)	

A hollow MS pipe is kept on a smooth straight edge with the pipe mid point sitting on it. A load 'W' Newtons is applied at the ends which is keeping the pipe balanced in the horizontal 76 condition, what is the safe maximum load 'W' that can be applied without yielding the tube. Consider the self weight of the tube as 'p' N/m. Diameter of the pipe is 'd', Youngs modulus of pipe is E, Allowable yield stress is o 2_m 2_m MS Pipe b) $(\sigma \pi d^4 - 32 p)/(32 E)$ a) $(\sigma \pi d^4 - 64 p)/(64 E)$ d) $(\sigma \pi d^3 - 64 p)/64$ $(\sigma \pi d^3 + 64 p)/64$ A car crashes against a wall. The initial velocity at collision is 15m/sec and the velocity after collision is 2.6m/sec in the opposite direction. The mass of the car is 1500kg, what is the average force exerted on the automobile bumper if collision lasts for 0.15 seconds. c) 2.76 x 10⁵ N d) None of these a) 1.76 x 10⁵ N b) 2.1 x 105 N Differential equation for the variation of amount of salt 'x' in a tank is given by : (dx/dt) + (x/20) = 10. where x is in kg and t is in minutes. Assuming that at time zero there is no salt in the tank, find the time at which the amount of salt increases to 100kg d) 10 ln 2 a) 100 ln 2 c) 20 ln 2 b) 50 ln 2 A 5 mm diameter aluminium alloy test bar is subjected to a load of 500 N. if the diameter of the 79 bar at this load is 4 mm, the true strain is (d) 0.45 c) 0.25 a) 0.56 (b) 0.22 A material is dimensionally stable at room temperature if its glass transition temperature (Tg) is 80 a) Below room (b) Just Above room (c) Equal to room (d) Well above room temperature temperature temperature temperature