Previous Year Paper Mechanical 23 Sept 2021 (Shift 1)

Section : GET-Mechanical
Q. 1 What is the total thermal resistance associated with this heat transfer process in double pipe heat exchanger with clean surfaces?
(Symbols have their usual meaning)
Ans
$\times 1 . \sum R_{t h}=\frac{\ln \left(\mathrm{d}_{\mathrm{o}} / \mathrm{d}_{\mathrm{i}}\right)}{2 \pi L k}+\frac{1}{h_{o} A_{o}}$
X2. $\sum R_{t h}=\frac{1}{h_{i} A_{i}}+\frac{1}{h_{o} A_{o}}$
X3. $\sum R_{t h}=\frac{1}{h_{i} A_{i}}+\frac{\ln \left(\mathrm{d}_{\mathrm{o}} / \mathrm{d}_{\mathrm{i}}\right)}{2 \pi L k}$
4. $\sum R_{t h}=\frac{1}{h_{i} A_{i}}+\frac{\ln \left(\mathrm{d}_{\mathrm{o}} / \mathrm{d}_{\mathrm{i}}\right)}{2 \pi L k}+\frac{1}{h_{o} A_{o}}$
Q. 2 A 30 cm diameter pipe carries water under the head of 20 meter with velocity of $\mathbf{4} \mathbf{~ m} / \mathrm{s}$. What is the flow rate in the pipe?
Ans
X 1. $0.09 \mathrm{~m}^{3} / \mathrm{s}$
ح. $0.09 \pi \mathrm{~m}^{3} / \mathrm{s}$
X ${ }^{3} .0 .9 \pi \mathrm{~m}^{3} / \mathrm{s}$
X4. $9 \pi \mathrm{~m}^{3} / \mathrm{s}$
Q. 3 Oil of specific gravity 0.7 flow in a 1 m diameter tube. If the oil flow rate through the tube is $\mathbf{1 2 0 0}$ litters/second. Find out the flow velocity of fluid in the tube.

Ans
. $4.8 / \pi \mathrm{m} / \mathrm{s}$
2. $2.8 / \pi \mathrm{m} / \mathrm{s}$

X ${ }^{3.4 .8 \pi \mathrm{~m} / \mathrm{s}}$
X $4.48 / \pi \mathrm{m} / \mathrm{s}$
Q. 4 An approach in which minimum work is done to reduce or eliminate inventories rather than optimize it is known as:
Ans
X 1. Inventory optimization
2. Just- In Time production
\times 3. Material requirement Planning
X 4. Two Bin Technique
Q. 5 The addition time in which non-critical activity can consume without increasing the project duration and known as:

Where, EFT - Earliest finish Time, EFT - Earliest finish time, LFT - Latest finish Time, LST - Latest start time

Ans
X 1. Total Float $=($ LST - EST $)$ or $($ LFT + EFT $)$
2. Total Float $=($ LST - EST $)$ or $($ LFT - EFT $)$

X 3. Total Float $=($ LST + EST $)$ or $($ LFT $-E F T)$
Х 4. Total Float $=($ LST $-E S T)+($ LFT $-E F T)$
Q. 6 For static and dynamic balancing of a single rotating mass by two masses rotating in different planes, the necessary conditions required are:
Ans

1. Net dynamic force acting on the shaft must be equal to zero.
2. Net dynamic force as well as couple acting on the shaft during operations must be
equal to zero.
3. Dynamic force as well as couple acting on the shaft may be kept minimum during operations if not equal to zero.
4. Net couple acting due to the dynamic forces on the shaft must be equal to zero.
Question Type : MCQ
Question ID : 3089201021
Status : Answered
Chosen Option : $\mathbf{2}$
Marks : $\mathbf{1}$
Q. 7 When a shear strain induces in body of a volume V, due to this:

Ans $\times 1$. area change occurs without change in volume
X 2. length change occurs without change in volume
$X 3$. volume change occurs along with angle
4. shape change occurs without change in volume
Question Type : MCQ
Question ID : 3089201012
Status : Answered
Chosen Option: $\mathbf{4}$
Marks : $\mathbf{1}$
Q. 8 The process of improving the hardness of the outer layers only, leaving the core to retain their original softness is known as:
Ans

1. Case Harding
2. Calcination
3. Quenching
4. Annealing
Q. 9 The (S-N) diagram provides information regarding:

Ans $\times 1$. Stress versus strength of ductile materials of specimen
X 2. Stress versus strength of brittle material of specimen
3. Fatigue strength versus cycle life of specimen
4. Safety of factor versus actual load of specimen
Q. 10 A conical reducer forms a part of piping system and rest on a support; its diameter changes from 40 cm at inlet and 30 cm at exit. The water enters with a constant velocity of $9 \mathrm{~m} / \mathrm{s}$. What is the exit velocity of the water?
Ans
$\times 1.6 \mathrm{~m} / \mathrm{s}$
$\times 2.9 \mathrm{~m} / \mathrm{s}$
3. $16 \mathrm{~m} / \mathrm{s}$
$\times 4.4 \mathrm{~m} / \mathrm{s}$
Q. 11 A bar of 74 mm diameter is reduced to 70 mm by cutting tool while cutting orthogonally. If the mean length of the cut chip is 73 mm , what is the cutting ratio?
Ans
$\times 1=0.709$
2. $=0.32$
3. $=1.23$
4. $=.0397$
Q. 12 How the shear stress in the solid shaft specimen varies due to Torque T ?

Ans

1. Shear stress due to the torsion will be greatest on outer surfaces.
2. Shear stress due to the torsion will be zero on outer surfaces.
$\times 3$. Shear stress due to the torsion will not have an impact on outer surfaces
$\times 4$
3. Shear stress due to the torsion will be smallest on outer surfaces.
Q. 13 The velocity of any point on the link with respect to another point on the same link is always:
Ans
X1. 45 degree to the line joining these points
\times 2. random to the line joining these points
\times 3. parallel to the line joining these points
2 4. perpendicular to the line joining these points
Q. 14 The ratio of change in length of a specimen to that of the original length of the specimen under testing is known as:
Ans
4. Longitudinal strain
5. Factor of safety
6. Shear strain
7. Poisson's ratio
Q. 15 A disk spinning with an angular velocity $\omega \mathrm{rad} / \mathrm{s}$ about an axis with mass moment of inertia I, the angular momentum of this disk during precession is correctly given by equation:
Ans
X1.I/ ω
8. $1 \times \omega$
$\times 3.1+\omega$
X4.1- ω
Q. 16 The factor of safety defined as ratio of ultimate tensile stress (UTS) to the working stress is applicable for which type of material?
Ans
X 1. Composite materials
$\times 2$. Ductile materials
9. Brittle materials
10. Plastic materials
Q. 17 Which of the following material has highest young's modulus?

Ans
X 1. Graphite
2. Copper
< 3. Gold
4. Silver
Q. 18 A network planning method in which activity time could not be estimated because of uncertainty of activity timing, this acquired the shape of probabilistic model is known as:
Ans 1. Programme evaluation review technique (PERT)
2. Least Cost scheduling (LCS)
3. Multi-operation Schedule system (MOSS)
4. Resource programming and scheduling method (RPSM)
Q. 19 The principle which states that the conditions of equilibrium of motion of a rigid body will remain unchanged if a force F acting at a given point of the rigid body is shifted to another point which is on same line of action is known as:
Ans
$X 1$. Principle of Formability of vectors
2. Principle of transmiss bility
$\times 3$. Principle of equivalent ability of resultant force
$\times 4$. Principle of forcibility of unit vectors
Q. 20 Let the standard size of the hole be $30_{-0}^{+0.03}$. Which one among the given values of shaft provides interference fit?

Ans
X 1. $30_{-0}^{+0.04}$
2. $30_{+0.04}^{+0.08}$
3. $30_{-0.08}^{-0.02}$
4. $30_{-0}^{+0.03}$
Q. 21 The function of the governor in engine is to regulate:

Ans $\times 1$. the speed of the engine when there is variations in the fuel supply
X 2. the fuel supply when there is variations in the load and maximize the speed variations
3. the speed of the engine when there is variations in the load
4. the speed within the cycle and absorb the extra energy during power stroke
Q. 22 The two helical springs with stiffness constant K_{1} and K_{2} are connected in series. What will be combined stiffness K of this assembly of the springs?

Ans
X. $\mathrm{K}=\frac{1}{\mathrm{~K}_{1}}+\frac{1}{\mathrm{~K}_{2}}$
×2. $\frac{1}{\mathrm{~K}}=\mathrm{K}_{1}+\mathrm{K}_{2}$
× 3. $\mathrm{K}=\mathrm{K}_{1}+\mathrm{K}_{2}$

- $4 . \mathrm{K}=\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{1}+\mathrm{K}_{2}}$
Q. 23 Herringbone gears are also known as:

Ans $\quad \times 1$. Double spur gears
2. Double helical gears
3. Rack and Pinion
4. Double bevel gears

Question Type : MCQ
Question ID : 3089201015
Status: Answered
Chosen Option : $\mathbf{2}$
Marks : 1

Q. 24 A process in which volume kept constant is known as:

Ans

1. Isochoric Process
2. Reversible adiabatic process
3. Isobaric process
4. Isothermal process
Q. 25 Considering a plane truss having M-number of members, N-number of joints, and Rnumber of reactions at its supports. Which of the following equation indicates that the truss is statically determinate in nature?

Ans

1. $M+R=2 N$
2. $M+R=3 N$
3. $M+R>3 N$
4. $\mathrm{M}+\mathrm{R}>2 \mathrm{~N}$
Q. 26 A mass of 50 kg suspended from one end of a helical spring, the other end being fixed.

The stiffness of the spring is $100 \mathrm{~N} / \mathrm{m}$. The resistance of air damping is given as 0.1
$\mathrm{N} / \mathrm{m} / \mathrm{s}$ vibrating freely at its natural frequency of $10 \mathrm{rad} / \mathrm{s}$. What will be the
magnification factor at resonance of the spring?
Ans
X1. 1000
$\times 2.500$
$\times 3.10$
4. 100
Q. 27 According to the AWS specifications, the color code for thoriated Gas Tungsten Arc Welding electrode is

Ans

1. Red
$\times 2$. Orange
2. Green
3. Brown

Q. 28 Pig iron is:

Ans
$\times 1$. iron with 0.40 carbon
2. iron with 2.40% carbon
3. iron with 4.0% carbon
4. pure iron with zero\% carbon
Q. 29 Two forces are acting at a point with a magnitude and direction represented by the two adjacent sides of a parallelogram. Their resultant is represented by the diagonal of the parallelogram passing through that point. This is based on which law?
Ans

1. Law of parallelogram of inertia
2. Law of parallelogram of forces
3. Law of triangle of inertia
4. Law of triangle of forces
Q. 30 The 2-mm-thick bar shown in Fig.is loaded axially with a constant force of 10 kN at the $40-\mathrm{mm}$ face of plate. When a $20-\mathrm{mm}$ hole is drilled, what is the magnitude of stress concentrations near the hole?

Ans
$\times 1.400 \mathrm{MPa}$
X 2. 100 MPa
3. 250 MPa
4. 1000 MPa
Q. 31 For right-circular cylindrical shafts made up of different materials with an individual cylinder length L_{i} and torque T_{i}. The angular deflection θ can be estimated accurately by equation:

Ans
x1. $\theta=\sum \theta_{i}=\frac{\mathrm{T}}{\mathrm{G}} \sum \frac{L_{i}}{\mathrm{~J}_{i}}$
2. $\theta=\sum \theta_{i}=\sum \frac{T_{i} L_{i}}{G_{i} J_{i}}$
×3. $\theta=\sum \theta_{i}=\sum \frac{T_{i} L_{i}}{G_{l}}$
X4. $\theta=\sum \theta_{i}=\sum \frac{T_{i}}{G_{l} J_{l}}$
Q. 32 Which is the CORRECT equation for estimating of the tool life among the following, where T - tool life in minutes, V - cutting speed in $\mathrm{m} / \mathrm{min}$ and C and n are constants?

Ans
$\times 1 . V T^{3 n}=C$
2. $V T^{n}=C$

X 3. $V T^{1 / n}=C$
4. $\mathrm{V}^{n} \mathrm{~T}=\mathrm{C}$
Q. 33 The application for which a point to point numerical control system can be employed in a machine is a:
Ans

1. Punching Machine
2. Lathe machine
3. Hobbling machine
4. Cutting machine
Q. 34 Pascal is the unit of:

Ans $\times 1$. Pressure and it is $\mathrm{N} / \mathrm{in}^{2}$
X 2. Pressure and it is equal to N / m
, 3. Pressure and equal to $\mathrm{N} / \mathrm{m}^{2}$
X4. Pressure and equal to $\mathrm{N} / \mathrm{mm}^{2}$
Q. 35 Thermal stresses in an unconstrained body is represented by which equation accurately:
(the symbols have their usual meaning)
Ans
$\times 1 . \sigma_{t h}=L \alpha \Delta t$
⒉ $\sigma_{t h}=\alpha \Delta t$
3. $\sigma_{t h}=0$

Х4. $\sigma_{t h}=E \alpha \Delta t$
Q. 36 During testing in a UTM, the terms lower yield points and upper yield points are specifically mentioned in which type of material?
Ans

1. Ductile materials during tensile testing
2. Ductile materials during compression testing
3. Non-ferrous materials in tensile testing
4. Brittle materials in compression testing
Q. 37 Due to partial balancing of the reciprocating parts there is a primary unbalanced force acts perpendicular to the line of stroke is known as:
Ans
5. Hammer blow
$\times 2$. Swaying couple
$\times 3$. Swaying blow force
$\times 4$. Tractive force
Q. 38 When the Fourier's law of heat conduction is compared with one of the electric flow law, it is exactly similar to:
Ans
6. the Ohm's law of current flow
7. the Faraday's law of conduction
8. the Plank's equation of heat flux
9. the Newton's law of cooling
Q. 39 Cutters with positive axial and radial rake angles are called:

Ans
$\times 1$. Positive shear-angle cutters
2. Negative cutters
3. Double positive cutters
4. Double-negative cutters
Q. 40 Which among the following technique use master schedule to manufacture the end product by preparing a detailed schedule of raw materials and components?
Ans

1. Material Requirement Planning (MRP)
2. ABC analysis
3. Economic Order Quantity (EOQ)
4. Inventory model under risk
Q. 41 Two fluid heat exchanger has inlet and outlet temperature of $65^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ for the hot fluid and $15^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ for the cold fluid. Find out whether it is counter flow or parallel flow and also calculate the effectiveness of heat exchanger.
Ans
5. Parallel flow with effectiveness $\varepsilon=0.5$
6. Counter flow with effectiveness $\varepsilon=0.4$
7. Counter flow with effectiveness $\varepsilon=0.7$
8. Parallel flow with effectiveness $\varepsilon=0.3$
Q.42 A solid conical bar of circular cross section is suspended vertically with a length L, and diameter of base is D what will be the elongation of the bar due to self-weight?

Consider specific gravity of the cone $=\gamma$, density ρ and $\mathrm{E}=$ Young's Modulus.
Ans
x 1 . Total elongation $=\frac{\rho \gamma \mathrm{L}}{6 E}$
\times 2. Total elongation $=\frac{\rho \gamma}{6 E}$
X 3. Total elongation $=\frac{\rho \gamma L^{2}}{E}$
4. Total elongation $=\frac{\rho \gamma L^{2}}{6 E}$
Q.43 A piece of the metal having specific gravity 13.6 is placed in mercury of specific gravity 13.6 , under this situation:
Ans
level
\times 2. the metal piece will sink to the bottom
3. the metal piece will be immersed in the mercury by half
4. the metal piece will float over the surface of mercury with no immersion
Q. 44 The laws of friction applicable as proposed by Coulomb are:

Ans

1. Statics and kinetic friction
2. Belt and pulley friction
3. Rolling and sliding friction
4. Dry and fluid friction
Q. 45 To ensure the stability of a floating ship, which of the condition must be satisfied?

Ans $\quad \times 1$. The centre of gravity should be below the centre of buoyancy
2. The centre of gravity should be below the metacentre
3. The centre of gravity should be above the metacentre and buoyancy
4. The centre of gravity should be above the centre of buoyancy
Q. 46 Which among the following represent the correct formula for the economic order quantity in terms of annual usage of units, order quantity and the annual carrying cost?
Ans

1. $E O Q=\sqrt{\frac{2(\text { Annual Usage in units }) \times(\text { Order cost })}{(\text { Annual carrying cost per unit })}}$
2. $E O Q=\sqrt{\frac{(\text { Annual Usage in units }) \times(\text { Order cost })}{(\text { Annual carrying cost per unit })}}$
3. $E O Q=\sqrt{\frac{2(\text { Annual Usage in units })}{(\text { Annual carrying cost per unit }) \times(\text { Order })}}$
\times 4. $E O Q=\sqrt{\frac{(\text { Annual } \text { Usage in units }) \times(\text { Order cost })}{2 \times(\text { Annual } \text { carrying cost per unit })}}$
Q. 47 When the frequency of the vibrating system becomes equal to the natural frequency of the system, this type of vibration is known as:
Ans
4. Resonance
5. Magnification factor
6. Forced v bration
7. Random vibration
Q. 48 Which among the following is NOT a metal forming process?

Ans
$\times 1$. Stamping
2. Welding
3. Drawing
4. Stretching
Q. 49 A cantilever shaft of 50 mm diameter and 400 mm long has a disc of mass 10 kg vibrating at its free end and has the stiffness of $160 \mathrm{~N} / \mathrm{m}$. Determine the natural frequency of transverse vibrations of this shaft.
Ans
$\times 1.56 \mathrm{~Hz}$
X 2. 72 Hz

- 3.84 Hz

X 4.44 Hz
Q. 50 The work done per cycle in a two-stroke engine is accurately given by which of the following equations in terms of the number of strokes (n per cycle), power in watts (P) and the number of revolutions per minute (N)?
Ans
\times 1. Work done per cycle $=\frac{P \times 30}{n}$
\times 2. Work done per cycle $=\frac{P \times n}{N}$
3. Work done per cycle $=\frac{P \times 60}{n}$
$\times 4$. Work done per cycle $=\frac{\mathrm{P} \times 30}{\mathrm{~N}}$
Q. 51 Design of factor n_{d} is the ratio of:

Ans
$\times 1 . n_{d}=\frac{\text { maximum stress }}{\text { breaking stress }}$
X2. $n_{d}=\frac{\text { loss of function stress }}{\text { allowable stress }}$
3. $n_{d}=\frac{\text { loss of function strength }}{\text { allowable stress }}$

X4. $n_{d}=\frac{\text { ultimate breaking stress }}{\text { allowablestress }}$
Q. 52 The clearance space between a shaft and a concentric sleeve has been filled with a Newtonian fluid. The sleeve attains $30 \mathrm{~cm} / \mathrm{s}$ when a force of 500 N is applied to it parallel to the shaft. What force is needed if it is desired to move the sleeve with a speed of $300 \mathrm{~cm} / \mathrm{s}$?
Ans
X 1.2000 N
$\times 2.4000 \mathrm{~N}$
$\times 3.3000 \mathrm{~N}$
4. 5000 N
Q. 53 Which of the following acts as reservoir of molten metal and supply it as required to overcome porosity because of shrinkage while solidification?
Ans
X1. Sprue
X 2. Runner
3. Riser
$\times 4$. Pouring basin
Q. 54 Which among the following cam follower is extensively used in an aircraft engine?

Ans
X 1. Spherical follower
2. Roller follower
\times 3. Flat faced follower
$\times 4$. Knife edge follower
Q. 55 Calculate the normal component of acceleration when $8 \mathrm{~m}^{3} / \mathrm{s}$ of water passes over the bucket of a spillway of radius 4 m . Consider the thickness of sheet of water over the bucket as 0.5 m and take unit width.
Ans

1. $46 \mathrm{~m} / \mathrm{s}^{2}$
2. $16 \mathrm{~m} / \mathrm{s}^{2}$
3. $66 \mathrm{~m} / \mathrm{s}^{2}$
4. $64 \mathrm{~m} / \mathrm{s}^{2}$
Q. 56 The correct relation between angle of static frictions (φs) and coefficient of static friction (μs) during impending motion of body can be stated as:

Ans
$\times 1 \cdot \tan \emptyset_{\mathrm{s}} / \mu_{\mathrm{s}}$
2. $\tan \emptyset_{\mathrm{s}}=\mu_{\mathrm{s}}$
\times 3. $\tan \emptyset_{\mathrm{s}}-\mu_{\mathrm{s}}$
X4. $\tan \emptyset_{s}>\mu_{s}$
Q. 57 It is impossible to construct an engine which works in a complete cycle and produce no other effect except the work while exchanging heat with a single heat reservoir. This statement is known as:
Ans $\quad \times 1$. second law of thermodynamics given by Clausius about heat pump
X 2. second law of thermodynamics given by Clausius about heat engine
3. second law of thermodynamics given by Kelvin- Planck about heat engine
4. second law of thermodynamics given by Kelvin- Planck about heat pump
Q. 58 A gear set consists of a 20-tooth pinion driving a 40-tooth gear having the diametral pitch 2. Compute the center distance between the gears in mm .
Ans
$\times 1.40 \mathrm{~mm}$
$\times 2.20 \mathrm{~mm}$
$\times 3.10 \mathrm{~mm}$
4. 15 mm
Q. 59 The rotating shaft induces eccentricity e due to the weight. It is rotating with an angular speed ω and the critical speed of the shaft is ω_{n}. Which equation represents vertical displacement y CORRECTLY?
Ans
χ 1. $y=\frac{\pi \cdot \omega^{2} \cdot \mathrm{e}}{\left(\omega_{\mathrm{n}}\right)^{2}-\omega^{2}}$
2. $y=\frac{\omega^{2} \cdot \mathrm{e}}{\left(\omega_{\mathrm{n}}\right)^{2}-\omega^{2}}$

X 3. $y=\frac{\omega \cdot \mathrm{e}}{\left(\omega_{\mathrm{n}}\right)^{2}-\omega^{2}}$
X4. $y=\frac{\omega_{\mathrm{n}}{ }^{2} \cdot \mathrm{e}}{\left(\omega^{2}\right)^{2}-\omega^{2} \mathrm{n}}$
Q. 60 If two bodies A and B are in thermal equilibrium with each other and the body C is in contact with B, then as per:
Ans
X 1. the Boyle's law body C is also in thermal equilibrium with A
X 2. the Charles's law body C is also in thermal equil brium with A
3. the Zeroth law body C is also in thermal equilibrium with A

X 4. the Joule's law body C is also in thermal equilibrium with B
Q. 61 In a heat exchanger water flows through a long 2 cm diameter copper tube at bulk velocity of $2 \mathrm{~m} / \mathrm{s}$, the density of fluid is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and the coefficient of viscosity $\mu=.010 \mathrm{~kg} / \mathrm{m} \mathrm{sec}$. Find out the Reynold's number.
Ans

1. $R_{e}=4000$
2. $R_{e}=5000$
3. $R_{e}=8000$
4. $R_{e}=2000$
Q. 62 According to which concept "The propagation of thermal radiation takes place in the form of discrete quanta called photons and each quantum has an energy of $E=h v$ "?

Ans

1. Max Planck's Quantum Theory
2. Maxwell's Theory of Electromagnetic radiation
3. Wien's displacement law
4. Stefan-Boltzmann law
Q. 63 A 0.5 kg of air with gas constant $0.287 \mathrm{~kJ} / \mathrm{kgK}$ is initially at 1 bar with $160^{\circ} \mathrm{C}$ temperatures compressed isothermally till the volume is reduced to $0.14 \mathrm{~m}^{3}$. Determine the initial volume of the gas.
Ans
$\times 1.1 .650 \mathrm{~m}^{3}$
5. $0.613 \mathrm{~m}^{3}$
6. $0.250 \mathrm{~m}^{3}$
7. $0.650 \mathrm{~m}^{3}$
Q. 64 A method of sale forecasting in which opinions from experts is solicit to arrive at reliable consensus is known as:
Ans
8. Delphi method
9. Weighted moving average method
10. Trend Line method
11. Market Survey method
Q. 65 Which equation describes the relationship between the coefficient of heat pump, the coefficient of the refrigerator and the heat engine CORRECTLY?

Ans

1. $(C O P)_{H P}=(C O P)_{\text {Refrigerator }}-1$
2. $(C O P)_{H P}=1+(C O P)_{\text {Refrigerator }}$
3. $(C O P)_{H P}-(C O P)_{\text {Refrigerator }}=0$
4. $(C O P)_{H P}+2=(C O P)_{\text {Refrigerator }}$
Q. 66 The intensity of pressure at point in a fluid at rest is:

Ans $\quad \times 1$. Equal in x and z but not equal in y direction
X 2. Equal in z direction but not equal in x and y directions.
3. Equal in all the directions
$\times 4$. Unique in all the directions
Q. 67 Find the economic batch quantity for the given data: Annual requirement of parts 800, inventory cost 10% of value/year, the setup cost is Rs. 200 per setup and the cost per part Rs. 20.
Ans
$\times 1.800$
$\times 2.200$
$\times 3.500$
4. 400
Q. 68 In the reverted gear train, four gears of radii r_{1}, r_{2}, r_{3} and r_{4} are arranged as shown in the following figure. Which of the following equations represent the centre distance (D) between the shafts accurately?

Ans
X1. $D=r_{1}+r_{3}=r_{2}+r_{4}$
X2. $D=r_{3}+r_{2}=r_{1}+r_{4}$
3. $\mathrm{D}=\mathrm{r}_{1}+\mathrm{r}_{2}=\mathrm{r}_{3}+\mathrm{r}_{4}$

X4. $D=r_{1}+r_{4}=r_{3}+r_{2}$
Q. 69 Which of the statement is CORRECT for critical thickness of insulation of pipes?

Ans $\times 1$. If the addition of insulation increases the thickness of insulation for cylindrical pipes, the heat transfer increases.
X 2. If the inner radius of the bare pipe is less than the critical radius, as the outer radius decreases, the rate of heat transfer decreases first, attains minimum values and then starts increasing
3. If the outer radius of the bare pipe is less than the critical radius, as the outer radius
increases, the rate of heat transfer increases first, attains maximum value and then starts decreasing.
X 4. If the addition of insulation on pipes does not increase the face area of the surface, the heat transfer reduces.
Question Type : MCQ
Question ID : 3089201045
Status : Answered
Chosen Option : $\mathbf{3}$
Marks : 1
Q. 70 A closed thermodynamic system is defined as:

Ans $\quad \times 1$. the system in which both mass and energy do not transfer to the surrounding
2. the system in which only energy can transfer to the surrounding but mass remains constant
\times 3. the system in which both mass and energy can transfer to the surrounding
4. the system in which only mass can transfer to the surrounding but energy remains constant
Q. 71 A closed system of constant volume experience a temperature rise $20^{\circ} \mathrm{C}$ when certain process occurs. The heat transfer in the process is 25 kJ . The specific heat at constant volume for the pure gas is $2 \mathrm{KJ} / \mathrm{kg}{ }^{\circ} \mathrm{C}$ and system contains 2 kg of this substance. Determine the work done during this process.
Ans
X 1.55 kJ
X 2. -75 kJ
\times
3.75 kJ
4. -55 kJ
Q. 72 The maximum temperature of fluid inlet in turbine is $650^{\circ} \mathrm{C}$ and heat rejection
temperature in the atmosphere is $40^{\circ} \mathrm{C}$. Considering the Indian conditions, what will be the maximum efficiency of Carnot cycle?
Ans
$\times 1.60 \%$
$\times 2.55 \%$
$\times 3.45 \%$
4. 66%
Q. 73 The study of a body in motion due to external forces which cause the motion are considered is known as:

Ans

1. Kinematics

X 2. Statics
3. Kinetics
$\times 4$. Dynamics
Q. 74 The stresses developed on a perpendicular plane area of a body due to external force is known as:

Ans
X 1. Point stress
$X 2$. Shear stress
3. Normal stress

X 4. Plane stress
Q. 75 A technique used for planning and controlling the most logical and economic sequence of operations for accomplishing a project is known as:
Ans

1. Critical path method
$\times 2$. Optimizing the cost
2. Updating the network
3. Smoothing
Q. 76 Which of equation represents the correct relation between absolute pressure $\mathrm{P}_{\text {abs }}$, atmospheric pressure $\mathrm{P}_{\text {atm }}$, the gauge
pressure P_{g} vacuum pressure $P_{\text {vac }}$?
Ans
X 1. $P_{g}=P_{\text {atm }}+P_{\text {abs }}+P_{\text {vac }}$
X 2. $\mathrm{P}_{\mathrm{abs}}=\mathrm{P}_{\mathrm{g}}+\mathrm{P}_{\mathrm{vac}}$
4. $\mathrm{P}_{\mathrm{abs}}=\mathrm{P}_{\mathrm{atm}}+\mathrm{P}_{\mathrm{g}}-\mathrm{P}_{\mathrm{vac}}$
5. $\mathrm{P}_{\mathrm{abs}}=\mathrm{P}_{\mathrm{atm}}+\mathrm{P}_{\mathrm{g}}$
Q. 77 The value of tolerance unit i is identified by which equation accurately though tolerance grade?

Ans
$\times 1 . i=0.90 \times \sqrt[3]{D}+0.001 \times D$
2. $i=0.45 \times \sqrt[3]{D}+0.001 \times D$
3. $i=0.45 \times \sqrt[3]{D}+0.1 \times D$
4. $i=0.45 \times \sqrt[3]{D}+0.001$
Q. 78 What is the purpose of $\mathbf{G 0 0}$ in a computer integrated manufacturing machine?

Ans

1. Hold/delay
2. Dwell
3. Deceleration of feed rate
4. Point-to point positioning and for rapid traverse
Q. 79 When no external force acts on a body after giving it initial displacement, the vibration of the body under this conditions is known as:
Ans
5. Periodic force vibration
6. Free vibration
7. Random vibration
8. Forced v bration
Q. 80 An air is passed through nozzle adiabatically to expand from an initial pressure of 3 bars and temperature of $150^{\circ} \mathrm{C}$ to a final pressure of 1.0 bar at 30 . What is work done by nozzle?

Ans
1.488 kJ
2. -188 kJ
3. 266 kJ
4. Flow in nozzle is adiabatic and produce no work

[^0]Q. 1 Who has written 'Akbar-Nama'?

Ans

1. Abu'l-Fazl bn Mubarak

X 2. Babur
3. Tolstoy
4. Kalidas
Q. 2 Who has written the 'Pride and Prejudice'?

Ans

1. Jane Austen

X 2. H.G.Wells
3. Thomas Hardy
4. Sir Thomas Moor

Question Type: MCQ
Question ID : 3089201086 Status: Answered
Chosen Option : 3 Marks : 0
Q. 3 HRIDAY stands for:

Ans \quad 1. National Heritage Corporate Development and Augmentation Yojana
2. National Housing City Development and Augmentation Yojana
3. National Heritage City Development and Augmentation Yojana
4. Heritage City Development and Augmentation Yojana
Q. 4 The first of the 10 Sikh Gurus, Guru Nanak was born in \qquad at Talwandi, near Lahore.
Ans
$\times 1.1359$

- 2.1469
$\times 3.1595$
X4. 1672
Q. 5 Alexander challenged king Porus, ruler of the kingdom between the rivers Jhelum and
\qquad _.
Ans

1. Chenab

X 2. Tapti
X 3. Ganga
X4. Ravi
Q. 6 On exposure to air, table salt (NaCl) turns moist and ultimately forms a solution especially during rainy season because it contains impurities like which are deliquescent.
Ans
$X 1$. sodium sulphate
X 2. ferrous chloride
X 3. copper sulphate
4. calcium chloride
Q. 7 The Chambal is a major tributary of which of the following rivers?

Ans

1. Yamuna

X 2. Godavari
3. Ganges
4. Brahmaputra

Section : English

Q. 1 The sentence below has been divided into three parts. Select the part of the sentence that has an error. If the sentence has no error, select the option 'No Error'.

He dedicates every hour of his / waking life into playing the best tennis he / can, and what is his reward? / No Error

Ans
$\times 1$. can, and what is his reward?
2. waking life into playing the best tennis he
3. No Error
4. He dedicates every hour of his
Q. 2 The question below consist of a set of labelled sentences. Out of four options given, select the most logical order of the sentences which form a paragraph.

The polar bear is a hypercarnivores bear whose native range lies largely within the Arctic Circle.
P. Its body characteristics are adapted for cold temperatures, for moving across snow, ice and open water, and for hunting seals, which make up most of its diet.
Q. A boar (adult male) weighs around $350-700 \mathrm{~kg}$, while a sow (adult female) is about half that size.
R. It is the largest extant bear species, as well as the largest extant land carnivore.

S . Although it is the sister species of the brown bear, it has evolved to occupy a narrower ecological niche.

Although most polar bears are born on land, they spend most of their time on the sea ice.

Ans
X1.PSRQ
X2. QRPS
X 3. SPRQ
4. RQSP
Q. 3 Four words are given, out of which only one word is spelt correctly. Choose the CORRECTLY spelt word.
Ans

1. GALLOP

X 2. GALLOPP
3. GALOP
4. GALLOPE
Question Type: MCQ
Question ID : $\mathbf{3 0 8 9 2 0 1 0 8 8}$
Status : Answered
Chosen Option : $\mathbf{4}$
Marks : 0
Q. 4 Select the word segment that substitutes (replaces) the bracketed word segment correctly and completes the sentence meaningfully. Select the option 'no correction required' if the sentence is correct as given.

Gordon (walk out into the hall) and took his long leather coat from the rail.
Ans
$X 1$. walks out in to the hall
2. wa ked out into the hall
\times 3. walked out in to the hall
X 4. No correction required.

Q. 5 Select the most appropriate 'one word ' for the expressions given below.

The symbols of royalty.
Ans
X 1. Insignia
X 2. Coat of Arms
X 3. Monarch
4. Regalia
Q. 6 Fill in the blank with the most appropriate choice.

An unreasonable fear of flying and a general \qquad of machines make some people hesitate to take a flight.
Ans
$\times 1$. disbelief
$\times 2$. veracity
3. mistrust
4. principle
Q. 7 Select the most appropriate meaning of the given idiom.

When hell freezes over.
Ans

1. Something that will never happen
2. Being caught red handed
3. Bad timing
4. When things are worst

Section : Reasoning \& Numerical Ability
Q. 1 Select the option that is related to the third term on the same basis as the second term is related to the first term.

Heptagon :: 7 :: Nonagon:?
Ans
-1.9
$\times 2.8$
$\times 3.11$
$\times 4.10$
Q. 2 Find the missing term in the following number series.

333, 342, 339, 348, \qquad
Ans
$\times 1.347$
$\times 2.352$
$\times 3.356$

- 4.345
Q. 3 In a certain code language, if 4 is called 5,5 is called 3,3 is called 1,1 is called 2 , and 2 is called 7 , then which is the smallest prime number?
Ans
$\times 1.1$
$\times 2.3$
*.7
$\times 4.2$

Question Type: MCQ Question ID: 3089201100 Status: Answered
Chosen Option : 3
Marks : 1
Q. 4 The average of the cube of the first four natural numbers is:

Ans $\times 1.100$
$\times 2.50$
$\times 3.75$

- 4.25
Q. 5 Find the missing term in the following letter series.
\qquad GD, EB, CZ, AX
Ans
1.IF
$\times 2$. HE
X 3.BF
X 4 . IK

Q. 6 Out of the given options, three are similar in a certain manner. However, one option is

 NOT like the other three. Select the option which is different from the rest.
Ans

$\times 1$. H8S
X 2. D4W
X 3.L12O
4. J10P
Question Type : MCQ
Question ID : 3089201098
Status : Answered
Chosen Option : $\mathbf{4}$
Marks : $\mathbf{1}$

[^0]: Section: General Knowledge and Current Affairs

