UPPSC

Previous Year PaperAE CE 2007

NISA-03	Seriai N	1075
अपना अनुक्रमांक सामने अंकों में बॉक्स के अंदर लिखें		प्रश्न-पुस्तिका शृंखला • • • • • • • • • • • • • • • • • • •
शब्दों में	2007	$oldsymbol{A}$
Civil Engineering	प्रश्न-पुस्तिका	सिविल अभियांत्रिकी
Paper-I		प्रश्नपत्र-)
	recommendation of the commendation of the comm	

Carial Ma

समय : 3 घंटे

प्रश्नों के उत्तर देने से पहले नीचे लिखे अनुदेशों को ध्यान से पढ़ लें।

पुर्णांक : 300

महत्त्वपूर्ण अनुदेश

- 1. प्रश्न-पुस्तिका के कवर पेज पर अथवा अन्दर कहीं भी कुछ न लिखें।
- सभी प्रश्नों के अंक समान हैं ।
- 3. यदि किसी प्रश्न में किसी प्रकार की कोई मुद्रण या तथ्यात्मक प्रकार की बुटि हो तो प्रश्न के अंग्रेजी तथा हिन्दी रूपान्तरों में से अंग्रेजी रूपान्तर को मानक माना जायेगा ।
- 4. अभ्यर्थी अपने अनुक्रमांक, विषय एवं प्रश्न-पुस्तिका की सिरीज़ को कोडिंग सही-सही करें अन्यथा उत्तर-पत्रक का मृल्यांकन नहीं किया जायेगा और उसकी जिम्मेदारी स्वयं अभ्यर्थियों की होगी ।
- 5. यदि आप रफ़ कार्य करना चाहते हैं, तो ऐसा प्रश्न-पुस्तिका पर अथवा उत्तर-पत्रक पर न करें । रफ़ कार्य के लिए आपको प्रश्न-पुस्तिका के साथ अलग से वर्किंगशीट दी जायेगी । यदि आपको अतिरिक्त वर्किंगशीट की आवश्यकता हो तो अन्तरीक्षक (इन्विजिलेटर) से माँग लें । वर्किंगशीट पर वांछित सूचना अभी भर लें ।
- 6. इस प्रश्न-पुस्तिका में 200 आइटम्स (प्रश्न) हैं । प्रत्येक आइटम के चार वैकल्पिक उत्तर आइटम के नीचे दिये गये हैं । इन चारों में से केवल एक ही सही उत्तर है । जिस उत्तर को आप सही या सबसे उचित समझते हैं, उत्तर-पत्रक (आन्सर शीट) में उसके अक्षर वाले वृत्त को एच.वी. पेन्सिल (इंक पेन या बॉल प्वाइंट पेन से कदापि नहीं) से पूरा काला कर दें ।
- 7. सभी प्रश्नों (आइट<mark>मों) का उत्तर दिया जाना है और प्र</mark>त्येक प्रश्न (आइटम) के समान अंक हैं। आपके जितने उत्तर सही होंगे उन्हीं के अनुसार अंक दिये जायेंगे।
- अपने उत्तर आपको अलग से दिये गये उत्तर-पत्रक में अंकित करने हैं । आपको अपने सभी उत्तर केवल उत्तर-पत्रक पर ही देने हैं । उत्तर-पत्रक के अंतिरिक्त अन्य कहीं पर दिया गया उत्तर मान्य न होगा ।
- 9. उत्तर-पत्रक पर कुछ लिखने के पूर्व उसमें दिये गये सभी अनुदेशों को सावधानीपूर्वक पढ़ लें । जो सूचनायें उसमें वांछित हाँ उन्हें अभी भर लें ।
- 10. जब टेस्ट पूरा कर लें तो अन्तरीक्षक को उत्तर-पत्रक वापस लौटा दें ।
- 11. यदि आपने इन अनुदेशों को पढ़ लिया है, इस पृष्ठ पर अपना अनुक्रमांक अंकित कर दिया है और उत्तर-पत्रक पर तथा वर्किगशीट पर वांछित सूचनायें भर दी हैं, तो तब तक इन्तजार करें जब तक आपको प्रश्न-पुस्तिका खोलने को नहीं कहा जाता ।

जब तक न कहा जाय इस प्रश्न-पुस्तिका को न खोलें।

महत्त्वपूर्ण: प्रश्न-पुस्तिका खोलने पर तुरन्त जाँच कर देख लें कि प्रश्न-पुस्तिका के सभी पेज भली-भाँति छपे हुए हैं । यदि प्रश्न-पुस्तिका में कोई कमी हो तो अन्तरीक्षक को दिखाकर उसी सिरीज की दूसरी प्रश्न-पुस्तिका प्राप्त कर लें ।

MSA-03-SET-A

CIVIL ENGINEERING

Paper - I

1.	The (a) (c)	ratio of lateral strain to axial strain of Yield ratio Poisson's ratio	of a ho (b) (d)	omogeneous material is known as Hooke's law Plastic ratio
2.	The	radius of gyration of section of area	A an	d moment of inertia from the axis is
	(a)	AI	(b)	$\frac{I}{A}$
	(c)	$\sqrt{\frac{I}{A}}$.	(d)	$\sqrt{\frac{A}{I}}$
3.	In the (a) (c)	e post tensioning system for small, Freyssinet system Gifford Udall – CCL system	mediu (b) (d)	m and large force, following system is used: PSC monowire system Le –McCall system
4.	Princ (a) (c)	ripal planes are subject to Normal stress only Both normal and tangential stress	(b) (d)	Tangential stress only None of the above
5.	bar is	0.25	(b)	opplied load and a gradually applied load on a 0.50
	(c)	1.00	(d)	2.00
6.	The I (a) (b) (c) (d)	boint of contraflexure is the point we bending moment changes sign bending moment is maximum bending moment is minimum shear force is zero	here	
7.	Thick Width Depth C/c d Effect Dista	beam roof section has the following kness of slab = 100 mm h of rib = 300 mm h of beam = 500 mm histance of beams = 3.0 m hitive span of beam = 6.0 m hnce between points of contraflexure effective width of flange of the bear	e is 3.0	
	(a)	1600 mm	(b)	1900 mm
	(c)	1500 mm	(d)	
8.		ratio of maximum shear stress to ave	erage :	· ·
	(a)	$\frac{3}{4}$	(b)	$\frac{4}{3}$
	(c)	<u>2</u> 3	(d)	$\frac{3}{2}$

सिविल अभियांत्रिकी

प्रश्नपत्र - I

1.	किसी	समांगी पदार्थ की पार्श्व विकृति तथा अक्षीर	य विकृति क	ा अनुपात निम्नलिखित कहलाता है :
	(a)	पराभव अनुपात	(b)	हुक का नियम
	(c)	प्वासों का अनुपात	(d)	सुघट्य अनुपात
2.	किसी	काट का क्षेत्रफल A तथा जड़त्व आघूर्ण I	के लिए अ	क्ष पर परिभ्रमण त्रिज्या होती है
	(a)		(b)	
	(c)	$\sqrt{\frac{I}{A}}$	(d)	$\sqrt{\frac{A}{I}}$
3.	पश्चत	, तन पद्धति में कम, मध्यम एवं अधिक बल	हेतु इस प्रण	गाली का प्रयोग किया जाता है :
T-50	(a)	फ्रैसीनेट प्रणाली	(b)	ंपी.एस.सी. मोनोवायर प्रणाली
	(c)	गिफोर्ड यूडाल-सी.सी.एल प्रणाली	(d)	ली-मैक्काल प्रणाली
4.	मख्य	समतल पर लगता है		(2)
	(a)		(b)	केवल स्पर्शरेखीय प्रतिबल
		दोनों अभिलम्ब और स्पर्शरेखीय प्रतिवल		इनमें से कोई नहीं
5.	एक र	छड़ पर अचानक लगाये गये बल और	शनै:-शनै:	<mark>बढ़ने वाले बल</mark> के कारण होने वाले प्रतिबल का अनुपात
		लिखित होता है :		
	(à)	0.25	(b)	0.50
	(c)	1.00	(d)	2.00
6.		परिवर्तन विन्दु वह बिन्दु है		
	(a)	जहाँ बंकन आघूर्ण चिह्न बदलता है।	MI	0
	(b)	जहाँ बंकन आर्घूर्ण अधिकतम हो ।		
		जहाँ वंकन आघूर्ण न्यूनतम हो । जहाँ अपरूपण बल शून्य हो ।	70).	
_				
7.		टी-धरन खण्ड <mark>का विवरण निम्न</mark> वत है : । की मोटाई	100 मिमी,	
			300 मिमी.	
			500 मिमी	
			3.0 मी.	
			6.0 मी.	
		2	3.6 मी.	
	धरन	के फलैंज की प्रभावी चौड़ाई होगी		
	(a)	1600 मिमी.	(b)	1900 मिमी.
	(c)		(d)	3000 मिमी.
8.	एक	वृत्ताकार काट पर अधिकतम तथा औसत र	अपरूपण प्रा	2
	(a)	3	(b)	$\frac{4}{3}$
	(-/	4	,	3
	(c)	<u>4</u>	(d)	= 2

9.		ral axis and its value is	force	V on a rectangular section of area A is at the
	(a)	$\frac{V}{A}$	(b)	
	(c)	$\frac{3V}{2A}$	(d)	$\frac{2V}{3A}$
10.		ratio of the moment of inertia of a t		ular section about its base and an axis parallel
	(a) (c)	1.0 2.5	(b) (d)	1.5 3.0
11.		entilever of length l is subjected to a rail rigidity of the section, the deflection		nding moment M at its free end. If EI is the of free end will be
	(a)	Ml EI	(b)	$\frac{Ml^2}{EI}$
	(c)	Ml 2EI	(d)	$\frac{Ml^2}{2EI}$
12.		maximum bending moment for a sibuted load w per unit length is	simpl	y supported beam of span l and a uniformly
	(a)	$\frac{wl^2}{2}$	(b)	$\frac{\mathrm{w}l^2}{4}$
	(c)	$\frac{wl^2}{8}$	(d)	$\frac{\text{w}l^2}{12}$
13.		maximum deflection due to a load	w at	the free end of a cantilever of length l and of
	(a)	$\frac{\text{w}l^3}{2\text{EI}}$	(b)	wl ³ 3EI
	(c)	$\frac{\text{w}l^3}{4\text{EI}}$		none of the above
14.	$P = \frac{7}{2}$	τ ² ΕΙ/ ₁₂ is the equation of Euler's cripp	ling lo	oad for a column if its
	(a) (b) (c) (d)	both ends are fixed both ends are hinged one end is fixed and other end free none of the above	ı	
15.	For a	a column of length l having one end	fixed	and other free, the equivalent length is
	(a) (c)	2l l/2	(b),	I I√2
16.	(a)	ree hinged arch is hinged at supports at one quarter span	(b)	at the crown
	(c)	anywhere in arch	(d)	none of the above
SET	-A		4	MSA-03

9.	A ह	तेत्रफल के एक आयताकार काट पर लगे V व होता है और उसका मान निम्नलिखित होता है :	अपरूपण	ा बल के कारण अधिकतम अपरूपण प्रतिबल उदासीन अक्ष
		$\frac{V}{A}$		$\frac{V}{2A}$
	(c)	$\frac{3V}{2A}$	(d)	$\frac{2V}{3A}$
10.	किस जडत	ते त्रिभुजाकार काट का आधार पर जड़त्व आघू च आघूर्ण का अनुपात होता है	र्ण तथा	आधार के समानान्तर इसके गुरुत्व केन्द्र से जाती हुई अक्ष पर
	(a) (c)	1.0 2.5	(b) (d)	
11.	I m			M लगा है । यदि काट की आनमनी दृढ़ता EI है तब मुक्त
	(a)	MI EI		MI ² EI
	(c)	<u>Ml</u> 2EI	(d)	$\frac{Ml^2}{2EI}$
12.	<i>l</i> विक	स्तृति की शुद्धालम्बित धरन पर w प्रति इकाई वे	न सम वि	वतरित भार लगने के कारण अधिकतम बंकन आघूर्ण होता है
	(a)	$\frac{wl^2}{2}$	(b)	$\frac{\underline{w}l^2}{4}$ $\frac{\underline{w}l^2}{12}$
	(c)	$\frac{\mathrm{w}l^2}{8}$	(d)	$\frac{wl^2}{12}$
13.	l विर अधि	स्तृति के एक प्रासधरन के मुक्त सिरे पर भार कतम विक्षेप होगा	w en	॥ है । यदि इसकी आनमन दृढ़ता EI हो तो मुक्त सिरे पर
		$\frac{\text{w}l^3}{2\text{EI}}$	(b)	$\frac{\mathrm{w}l^3}{3\mathrm{EI}}$
	(c)	$\frac{\mathrm{w}l^3}{4\mathrm{EI}}$	(d)	इनमें से कोई नहीं
14.	$P = \frac{2}{3}$	$\frac{\pi^2 \mathrm{EI}}{l^2}$ आयलर के भार का समीकरण एक स्तं	भ के लि	गए है यदि उसके
	(a) (b)	दोनों सिरे आबद्ध हैं । दोनों सिरे कब्जेदार हैं ।		
	(c)	एक सिरा आवद्ध और दूसरा सिरा मुक्त है । इनमें से कोई नहीं ।		
1.5			•	
15.		ई <i>l</i> के एक स्तम्भ का एक सिरा आबद्ध और दू 2 <i>l</i>		ा मुक्त हो तो उसकी तुल्य लम्बाई होगी
	(a) (c)	1/2	(b) (d)	1/√2
16.	तीन व	कब्जेदार डाट में दो कब्जे आधारों पर और तीस		M120 1 42
ar estită		एक चौथाई विस्तृति पर	(b)	शीर्ष पर
	(c)	डाट में कहीं भी	(d)	इनमें से कोई नहीं
MSA	-03		=	

18.	Ma: spar	kimum deflection in a cantilever be	eam h	aving UDL w per unit length, over the entire
	(a)	$\frac{\text{w}l^3}{3\text{EI}}$	(b)	wl ⁴ 8EI
	(c)	wl ³ 48EI	(d)	none of the above
19.	The	moment at the ends of a fixed be	am of	length L carrying a UDL of w at the entire
	(a)	$\frac{\text{wL}^2}{8}$	(b)	wL ² 6
	(c)	$\frac{\text{wL}^2}{12}$	(d)	$\frac{\text{wL}^2}{2}$
20.	Max the o	timum deflection at the centre of a	simp	ly supported beam carrying a point load wat
	(a)	$\frac{5}{384} \frac{wl^4}{EI}$	(b)	$\frac{1}{16} \frac{wl^2}{EI}$
	(c)	$\frac{1}{48} \frac{\text{W}l^3}{\text{EI}}$	(d)	$\frac{1}{24} \frac{wl^3}{EI}$
21.	Max	imum slope for UDL for a simply s	uppor	ted beam is
	(a)	$\frac{1}{24} \frac{\text{w}l^3}{\text{EI}}$	(b)	$\frac{5}{384} \frac{\text{w}l^3}{\text{EI}}$
	(c)	$\frac{1}{6} \frac{\text{w}l^3}{\text{EI}}$	(d)	$\frac{1}{8} \frac{\text{w}l^3}{\text{EI}}$
22.	A be (a) (b) (c) (d)	cam is said to have been subjected to shear force is constant throughout load is applied as UDL throughout load is applied at the mid span only none of the above	the sp	pan
23.	The 0.2 i	ratio of Young's modulus and mod	ulus o	f rigidity for a material having Poisson's ratio
	(a)	12 5	(b)	<u>5</u> 12
	(c)	14/5	(d)	<u>5</u> 14
24.	A ba strai	ar of length L and cross-sectional as n energy stored in the bar is	rea A	is subjected to gradually applied load w. The
	(a)	wL 2AE	(b)	wL AE
	(c)	$\frac{w^2L}{AE}$	(d)	$\frac{w^2L}{2AE}$
SET-	A		6	MSA-03

The maximum deflection of a fixed beam carrying a central load w is equal to

 $\frac{wl^3}{48EI}$

(a)

(b) $\frac{wl^3}{96EI}$

(d) $\frac{5}{384} \frac{wl^3}{EI}$

17.	मध्य में w भार वहन करने वाले दृढ़ धरन में अधिक	तम विक्षे	
	(a) $\frac{wl^3}{48EI}$	(b)	wl ³ 96EI
	(c) $\frac{wl^3}{192EI}$	(d)	$\frac{5}{384} \frac{\text{w}l^3}{\text{EI}}$
18.	एक समान वितरित भार w / एकांक लम्बाई पूरे वि		लगने पर एक प्रासधरन में अधिकतम विक्षेप का मान होगा
	(a) $\frac{\text{w}l^3}{3\text{EI}}$	(b)	$\frac{\text{w}l^4}{8\text{EI}}$
	(c) $\frac{\text{w}l^3}{48\text{EI}}$		इनमें से कोई नहीं
19.	लम्बाई L के दृढ़ आबद्ध धरन पर एक समान विर्ता		
	(a) $\frac{\text{wL}^2}{8}$	(b)	$\frac{\text{wL}^2}{6}$
	(c) $\frac{\text{wL}^2}{12}$	(d)	wL ²
20.	शुद्धालम्बित धरन के मध्य में w बिन्दुभार लगा है	। मध्य पर	अधिकतम विक्षेप होगा
	(a) $\frac{5}{384} \frac{wl^4}{EI}$	(b)	$\frac{1}{16} \frac{\text{w}l^2}{\text{EI}}$
	(c) $\frac{1}{48} \frac{\text{w}l^3}{\text{EI}}$	(d)	$\frac{1}{24} \frac{\text{w}l^3}{\text{EI}}$
21.	शुद्धालम्बित धरन में <mark>एक समान वितरित भार के</mark> वि	लए अधि	कतम ढाल होगा
	(a) $\frac{1}{24} \frac{\text{w}l^3}{\text{EI}}$	(b)	$\frac{5}{384} \frac{\text{w}l^3}{\text{EI}}$
	(c) $\frac{1}{6} \frac{wl^3}{EI}$	(d)	$\frac{1}{8} \frac{\text{w}l^3}{\text{EI}}$
22.	किसी धरन पर शुद्ध बंकन लगा है तब कहा जाता	है, जब	
	 (a) अपरूपण बल पूरे विस्तृति में एक सा होत (b) पूरे विस्तृति भार एक समान वितरित भार 	हि। केरूप में	लगार्ड जाती है ।
	(c) भार केवल विस्तृति के मध्य पर <mark>ल</mark> गाया ज		VI 116 - 1101 & 1
	(d) इनमें से कोई नहीं ।		·
23.			-
	(a) $\frac{12}{5}$		5 12
F	(c) $\frac{14}{5}$	(d)	$\frac{5}{14}$
24.	एक छड़ की लम्बाई L तथा काट का क्षेत्रफल . विकृति ऊर्जा होगी	A है । उ	इस पर शनै:-शनै: बढ़ता भार w लगता है । छड़ में संचयित
	(a) $\frac{\text{wL}}{2\text{AE}}$	(b)	wL AE
	(c) $\frac{w^2L}{AE}$	(d)	w^2I .

25. The nature of distribution of horizontal shear stress in a rectangular beam is

(a) linear

(b) parabolic

(c) hyperbolic

(d) elliptic

26. Equilibrium method is also known as

- (a) compatibility method
- (b) flexibility method

(c) force method

(d) displacement method

27. A beam is hinged at end A and fixed at B. A moment M is applied at end A. What is the moment developed at end B?

(a) $-\frac{M}{2}$

(b) $\frac{M}{2}$

(c) -M

(d) M

28. Shear span is defined as the zone where

- (a) bending moment is zero
- (b) shear force is zero
- (c) shear force is constant
- (d) bending moment is constant

29. The force in the member CD of the truss as shown in the figure is

(a) zero

(b) 2P compressive

(c) P compressive

(d) P tensile

30. The shear force diagram for a simply supported beam of span L is shown in the figure. The maximum bending moment in the beam is

(a) $\frac{\text{wL}}{2}$

(b) $w\left(\frac{L}{2}-a\right)$

(c) wa

(d) w(L-a)

- 25. एक आयताकार धरन में क्षैतिज अपरूपण प्रतिबल के वितरण की प्रकृति होती है
 - (a) रेखीय

.(b) परवलयिक

(c) अतिपरवलयिक

- (d) दीर्घवृत्तीय
- 26. संतुलन विधि को निम्नलिखित से जाना जाता है:
 - (a) सुसंगत विधि

(b) लचीली विधि

(c) बल विधि

- (d) विस्थापन विधि
- 27. एक धरन का सिरा A कब्जेदार और सिरा B आबद्ध है । सिरे A पर आधूर्ण M लगाया जाता है । सिरे B पर उत्पन्न होने वाला आधूर्ण होगा
 - (a) $-\frac{M}{2}$

(b) $\frac{M}{2}$

(c) -M

- (d) M
- 28. कर्तन लम्बाई को एक क्षेत्र की तरह परिभाषित किया जाता है जहाँ
 - (a) बंकन आघूर्ण शून्य हो ।
- (b) अपरूपण बल शून्य हो ।
- (c) अपरूपण बल अचर हो ।
- (d) वंकन आघूर्ण अचर हो ।
- 29. दिये गये चित्र के कैंची के सदस्य CD में बल का मान है:

(a) शून्य

(b) 2P संपीडन

(c) P संपीडन

- (d) P तनन
- 30. एक शुद्धालम्बित धरन को लम्बाई L है जिसका अपरूपण बल आरेख में दिखाया गया है । उसका अधिकतम बंकन आधूर्ण है

(a) $\frac{\text{wL}}{2}$

(b) $w\left(\frac{L}{2}-a\right)$

(c) wa

(d) w(L-a)

- 31. Muller-Breslau principle is applicable to get influence line for
 - (a) reaction at the ends of a beam
- (b) bending moment at a section
- (c) shear force at a section
- (d) forces and moments at any section
- 32. The variation of influence line for stress function in a statically determinate structure is
 - (a) parabolic

(b) bilinear

(c) linear

- (d) uniformly rectangular
- 33. The propped cantilever beam shown in the figure is provided with a hinge at C. A and B are at the same level. The reaction at fixed end A will be

(a) $\frac{4}{3}$ P

(b) P

(c) $\frac{3}{4}$ P

- (d) $\frac{P}{2}$
- 34. A three hinged semicircular arch of radius R carries a uniformly distributed load w per unit length on the whole span. The horizontal thrust is
 - (a) wR

(b) $\frac{wR}{2}$

(c) $\frac{4}{3\pi}$ wR

- (d) $\frac{2}{3\pi}$ wR
- 35. In the portal frame shown in the figure, the ratio of sway moments in column AB and CD will be equal to

- (a) $\frac{1}{3}$
- (c) $\frac{9}{8}$

- (d) $\frac{13}{8}$
- 36. The size of fillet weld is indicated by the
 - (a) side of the triangle of the fillet
- (b) throat of the fillet
- (c) length of the fillet weld
- (d) size of the plate

- 31. प्रभावी रेखा प्राप्त करने के लिए मूलर-ब्रैस्लू का सिद्धान्त लागू होता है
 - (a) धरन के सिरे पर प्रतिक्रिया के लिए
- (b) किसी काट पर बंकन आधूर्ण के लिए
- (c) किसी काट पर अपरूपण बल के लिए
- (d) किसी काट पर बलों एवं आघूणों के लिए
- 32. स्थैतिकतया निर्धायं संरचना के प्रतिबल फलन के प्रभावी रेखा का विचरण होता है
 - (a) परवलयिक

(b) द्विरेखीय

(c) रेखीय

- (d) एक समान आयताकार
- 33. एक टेकदार प्रासधरन चित्र में दर्शाया गया है । C पर कब्जा लगाया गया है । A और B एक समान तल पर हैं । आबद्ध सिरे A पर प्रतिक्रिया होगी

(a) $\frac{4}{3}$ P

(b) P

(c) $\frac{3}{4}$ P

- (d) $\frac{P}{2}$
- 34. एक तीन कब्जेदार अर्घवृत्ताकार डाट की त्रिज्या R है । उसकी पूर्ण लम्बाई पर एक समान वितरित बल w लगा है । क्षैतिज प्रणोद होगा
 - (a) wR

(b) $\frac{wR}{2}$

(c) $\frac{4}{3\pi}$ wR

- (d) $\frac{2}{3\pi}$ wR
- 35. चित्र में दर्शाये गये पोर्ट<mark>ल फ्रेम के स्तम्भ AB</mark> और CD में संदोलन आधूणों का अनुपात निम्नलिखित के बराबर होगा :

(a) $\frac{1}{3}$

(b) $\frac{2}{3}$

(c) $\frac{9}{8}$

- (d) $\frac{13}{8}$
- 36. फिलेट वेल्ड के आमाप को प्रदर्शित करता है
 - (a) फिलेट के त्रिभुज की भुजा
- (b) फिलेट का कंठ
- (c) फिलेट वेल्ड की लम्बाई
- (d) चादर की आमाप

37.	Multi	nle passes are used in welding who	en the	thickness of the weld is to be more than
51.	(a)	5 mm	(0)	·
	(c)	4 mm	(d)	6 mm
		el member which is subjected to p	rimary	tension is called
38.			(b)	Strat
	(a)	sling	(d)	none of the above
	(c)	Sinig		of a steel column in which the design is
39.	The	maximum admissible slendernes	s ratio	o of a steel column in which the design is
	gove	erned wind load combination is	(b)	180
	(a)	120	(d)	350
	(c)	250		
40.	The	maximum allowable deflection in	roof p	urlins is
			(b)	L 200
	(a)	10 mm	1	1
	(c)	$\frac{L}{325}$	(d)	400
	(0)			
		Where L is the length of purlin		a 11 Alexandria
41.	The	e flange splice in plate girders be p	laced I	maximum moment location
	(a)	maximum shear location	(b)	1 - 1- action
	(c)	minimum moment location		
42	In	plate girders horizontal stiffeners a	re nee	ded if the thickness of web is
42		A STATE OF THE STA	(b	
	(a)	less than 6 mm		
	(0)	less than $\frac{L}{500}$	(d	nearly equal to flange thickness.
	(c)	100 Strain 500	langes	
		Where $d = distance$ between f L = span of girder	ian 500	
		E = span of green	/	the second total collapse of a structure is
4:	3. Th	he number of plastic hinges which	will ca	tuse the overall total collapse of a structure is
	(a	one more than the order of stat	icai in	determinacy
	(b	the ander of statu	cal ind	eterminacy
	(c			
	(d	not determinable		ties likely to be subjected to
4	4. T	he maximum permissible slende	emess	ratio for steel ties likely to be subjected to
	C	ompression is		b) 350
		a) 400		d) 180
	(0	c) 250		
2	45. V	Which of the following loads are to	be co	nsidered in designing a gantry girder?
R	(Gantry load 	- 2	(II) Lateral reces
	,	I opgitudinal loads		(iv) Wind loads
		Select the correct answer using the	codes	(b) (i), (ii) and (iii)
		(a) (i) and (ii)		(d) (ii), (iii) and (iv)
	((c) (i) and (iii)		N. N

37.	वेलि	डग के बहुपारणों का प्रयोग तब किया जाता	है जब के	
V:T-9.19/Z:	(a)	5 mm	চ পৰ বল (b)	
	(c)	4 mm	(d)	6 mm
38.	वह	इस्पात सदस्य जिस पर प्राथमिक तनाव आत	ा है, कहल	गता है
	(a)	वन्धक		आलम्बन स्तंभ
	(c)	स्लिंग		इनमें से कोई नहीं
39.	एक निम्न	इस्पातीय स्तम्भ जिसका अभिकल्प वायुः लिखित है :	भार संयोज	न द्वारा संनियमित होता है उसका स्वीकार्य तनुता अनुपात
	(a)	120	(b)	180
	(c)	250	(d)	350
40.	छत ।	परिलन में अधिकतम अनुमन्य विक्षेप है		
	(a)	10 mm	(b)	L 200 L 400
	(c)	<u>L</u> 325		L 200
	(0)		(d)	L 400
		जहाँ L परिलन की लम्बाई है ।		
41.	प्लेट	गर्डर में फ्लेन्ज समबंधन इसमें से किसके प	स रखना र	उचित होगा ?
	(a)	अधिकतम अपरूपण के स्थान पर	(b)	अधिकतम बंकन के स्थान पर
	(c)	न्यूनतम बंकन के स्थान पर		न्यूनतम् अपरूपण के स्थान पर
42.	प्लेट :	गर्डर में क्षैतिज दृ <mark>ढकारी की आवश्यकता होत</mark>	ती है यदि प	ोटा की मोटाई है
		6 mm से कम	(b)	Od /
	(-)	L \		1
	(c)	<u>L</u> 100 से कम	(d)	फ्लेन्ज की मोटाई के लगभग बराबर
		जहाँ d = फ्लेन्जों के बीच की दूरी		
		L = गर्डर को विस्तृति		
43.	सुघट्य	ा कब्जों की संख्या जिसके कारण किसी <mark>सं</mark> र	चना का पू	री तरह विफलन होता है
	(a)	स्थातक आनधारणायता काटि से एक अधि	क	
		स्थैतिक अनिर्धारणीयता कोटि के बराबर		
	(c) (d)	स्थैतिक अनिर्धारणीयता से एक कम ज्ञातव्य नहीं		
44.	इस्पात	बंधक जिसमें संपीडन लग सकता है उसका	अधिकतः	न अनुज्ञेय तनुता अनुपात है
	(a) (c)	400 250	(b)	350
	1000000		(d)	180
45.	नम्नार	निखत भारों में से किनका गैन्ट्री गर्डर के अधि		
	(i)	गैन्ट्री का भार	(ii)	पार्श्विक भार
	(III) नीचे वि	अनुदैर्घ्य भार ये गये कूट का प्रयोग करते हुए सही उत्तर चु	(iv)	वायु भार
	(a)	प गर्प कूट का प्रयाग करत हुए सहा उत्तर च् (i) और (ii)	The second second	20 an
		(i) और (iii)	(b)	(i), (ii) और (iii)
	(-)	(i) 311 (III)	(d)	(ii), (iii) और (iv)

	Where should splices	in	column	be pro	vided?
40.	Where should sprices				(h)

(a) At the floor level

- At the mid height of column (b)
- At the beam column joint (c)
- At one-fourth height of column (d)

Which one of the following is a compression member?

Purlin (a)

Boom (b)

Cleat (c)

Tie (d)

The permissible tensile stress in bolts used for column base is 48.

120 N/mm² (a)

150 N/mm² (b)

 $0.6 \, f_{v}$ (c)

(d) 0.4 f_v

Where fy is the yield stress

- The correct maximum shear capacity of a prismatic beam under plastic design of steel 49. structures is
 - (a) Awf_{v}

0.75 Awf

(c) 0.55 Awf_v

(d) 0.50 Awf,

Where symbols have their usual meaning.

The effective length of the compression member shown in the figure is equal to: 50.

1.2 L (a)

0.5 L

2.0 L (c)

- (d)
- A portal frame has a collapse mechanism as shown in the figure, is a 51.

- pure portal mechanism (a)
- panel mechanism (b)
- combined mechanism (c)
- beam mechanism (d)

In the roof truss for principal rafter most frequently used section is

- (a) two channels placed back to back
- one angle and one channel placed back to back (b)
- two angles placed back to back (c)
- none of the above (d)

Anna Care		*			٠				
16	स्तम्भ	77	जान	गरना	क्टना	न्यागर	जाजा	=ागिना	
40	**	-	011	4-	unn!	61.112	91171	GIIDE	- 12

(a) फर्श तल पर

- (b) स्तम्भ के मध्य ऊँचाई पर
- (c) धरन स्तम्भ के जोड़ पर
- (d) स्तम्भ के एक चौथाई ऊँचाई पर

47. निम्नलिखित में से संपीडन सदस्य कौन सा है ?

(a) परिलन

(b) बूम

(c) क्लीट

(d) बंधक

48. स्तम्भ के आधार में प्रयोग किये जाने वाले काबलों में अनुज्ञेय प्रतिबल होता है

(a) 120 N/mm²

(b) 150 N/mm²

(c) 0.6 f_y

(d) $0.4 f_{v}$

जहाँ f_y पराभव प्रतिबल है ।

- 49. इस्पात संरचना के सुघट्य अभिकल्पन में प्रिज्मी धरन की सही अधिकतम अपरूपण क्षमता निम्नलिखित होती है:
 - (a) Awf_y

(b) $0.75 \, \text{Awf}_{v}$

(c) 0.55 Awf_y

(d) 0.50 Awf

जहाँ संकेतक अपने सामान्य अर्थ रखते हैं ।

50. चित्र में दिखाये गये सम्पीडन सदस्य की प्रभावी लम्बाई निम्नलिखित के बरावर होगी:

(a) 1.2 L

(b) 0.5 L

(c) 2.0 L

- (d) 1.5 L
- 51. चित्र में दर्शाये गये पोर्टल फ्रेम की विफलन क्रियाविधि है

(a) शुद्ध पोर्टल क्रियाविधि

(b) पैनल क्रियाविधि

(c) संयुक्त क्रियाविधि

(d) धरन क्रियाविधि

52. छत कैची में मुख्य राफ्टर के लिए अक्सर निम्नलिखित खण्ड का प्रयोग किया जाता है :

- (a) दो चैनलों को पीठ से पीठ सटाकर
- (b) एक कोण और एक चैनल को पीठ से पीठ सटाकर
- (c) दो कोणों को पीठ से पीठ सटाकर
- (d) इनमें से कोई नहीं

53.	Effe (a) (c)	ctive length of a column is the leng maximum moments zero moment	th betw (b) (d)	veen the points of zero shear none of the above
54.	In ge	eneral, the ratio of the depth of plate	girde	er to its span is taken as
		$\frac{1}{5}$ to $\frac{1}{8}$		$\frac{1}{8}$ to $\frac{1}{10}$
	(c)	$\frac{1}{10}$ to $\frac{1}{12}$	(d)	$\frac{1}{12} \text{ to } \frac{1}{16}$
55.	Acc	ording to IS: 226 - 1975 axial direc	t stres	s in tension member should be by the formula
	(a)	$\sigma_{at} = 0.6 f_{v}$		$\sigma_{at} = 0.8 f_v$
		$\sigma_{at} = 0.2 f_{v}$	(d)	none of the above
				6
56.	In co	ompression member pitch of tacking 1000 mm		
	(c)	650 mm	(b) (d)	600 mm 700 mm
57.	form	ula		ssible average shear stress is calculated by the
		$\tau_{va} = 0.40 f_{y}$	(b)	$\tau_{\text{ua}} = 0.45 \text{f}_{\text{y}}$ $\tau_{\text{ua}} = 0.3 \text{f}_{\text{y}}$
	(c)	$\tau_{\text{va}} = 0.35 \text{ f}_{\text{y}}$	(d)	$\tau_{\rm ua} = 0.3 \rm f_y$
58.	Bear	ing strength of single rivetted lap jo	int is	equal to
		$d \times t \times f_b$	(b)	$2d \times t \times f_h$
	(c)	$2 \times d^2 \times t \times f_b$	(d)	none of the above
-0	61			
59.	Shea	r strength in double shear in rivette	d joint	s is given by
	(a)	$\frac{1}{4}f_s$	(b)	$\frac{2\pi d^2}{4} f_s$
	(c)	$\frac{\pi}{4} df_s$	(d)	none of the above
60.	The 1	minimum pitch of rivet hole of dian	neter d	should not be less than
	(a)	1.5 d	(b)	2.0 d
	(c)	2.5 d	(d)	1.0 d
61.	A riv	retted joint may fail		
	(a)	in shear	(b)	in bearing
	(c)	in crushing of rivets	(d)	all of the above
62.	Acco	ording Unwin's formula, if t is thick	ness o	f plate in mm the nominal diameter of rivet is
	(a)	1.91 t	(b)	1.91 t ²
	(c)	1.91 √t	(d)	1 91 3/6

53.	. एक स्तम्भ की प्रभावी लम्वाई निम्नलिखित बिन्दुओं के बीच की लम्वाई होती है :						
	(a)	अधिकतम आघूर्ण	(b)	शून्य अपरूपण			
	(c)	शून्य आघूर्ण	(d)	इनमें से कोई नहीं			
54.	सामान्यतया पट्टिका गर्डर की गहराई तथा विस्तृति का अनुपात निम्नलिखित लिया जाता है :						
4		$\frac{1}{5} \stackrel{?}{\leftrightarrow} \frac{1}{8}$		$\frac{1}{8} \stackrel{?}{\leftrightarrow} \frac{1}{10}$			
	(c)	$\frac{1}{10} \stackrel{\stackrel{\rightarrow}{\text{H}}}{12}$	(d)	$\frac{1}{12} \stackrel{\stackrel{.}{\leftrightarrow}}{1} \frac{1}{16}$			
55.		य मानक IS : 226 – 1975 के अनुसार किर चाहिए :	ती तनन	उपांग में अक्षीय सीधा प्रतिबल निम्नलिखित सूत्र के अनुसार			
		$\sigma_{at} = 0.6 f_y$	(b)	$\sigma_{} = 0.8 f$			
		$\sigma_{at} = 0.2 f_{v}$	(d)	σat = 0.8 fy इनमें से कोई नहीं			
				63			
56.		न उपांगों में आबंधन रिवटों का पिच इससे अधि 1000 mm					
	(a) (c)	650 mm	(b)	600 mm 700 mm			
57.	- 8						
57.		वरन म भारताय मानक 1 S : 800 – 1 984 व ज्ञात करते हैं :	क अनुस	<mark>सार अ</mark> नुज्ञेय औसत अपरूपण प्रतिबल का मान निम्नलिखित			
	70		(b)	$\tau_{\rm c} = 0.45 \rm f$			
		$\tau_{va} = 0.35 f_{v}$	(d)	$\tau_{va} = 0.45 f_{y}$ $\tau_{va} = 0.3 f_{y}$			
50				ua y			
58.		रिवेट चढ़ाव जोड हेतु धारण क्षमता का मान हे d×t×f _h	Y	242425			
		$2 \times d^2 \times t \times f_b$	(9)	$2d \times t \times f_b$ इनमें से कोई नहीं			
				रनन स पगर्नहा			
59.		ड जोड़ में दोहरे अपरूपण में अपरूपण सामर्थ्य	है				
	(a)	$\frac{\pi d^2}{4} f_s$	(b)	$\frac{2\pi d^2}{4} f_s$			
	(c)	$\frac{\pi}{4} df_s$	(d)	इनमें से कोई नहीं			
60.	d व्या	स वाले रिवेट छिद्र का न्यूनतम अन्तराल निम्नी	लिखित	से कम नहीं होना चाहिए :			
	(a)	1.5 d	(b)	2.0 d			
	(c)	2.5 d	(d)	1.0 d			
61.	एक रि	वेट जोड का पराभव होता है		*			
	(a)	अपरूपण में	(b)	धारण में			
	(c)	रिवेट का संदलन होने पर	(d)	उपर्युक्त सभी			
62.	र्याद प	लेट की मोटाई t मिलीमीटर में है तो अनविन के	सूत्र के	अनुसार रिवेट का अंकित व्यास है :			
	(a)	1.91 t	(b)	1.91 t ²			
	(c)	1.91 √t	(d)	1.91 ³ √t			

63.	Rive (a) (c)	t value is equal to strength of rivet in shearing strength of rivet in tension	(b) (d)	strength of rivet in bearing minimum of (a) and (b)
64.	The (a) (c)	Euler's formula for column is valid zero slenderness ratio large slenderness ratio	for (b) .(d)	small slenderness ratio all of the above
65.		section modulus and the plastic mo	dulus	of a section are Z and S respectively. Then its
		$\frac{S-Z}{Z}$ $\frac{Z}{S}$	(b)	$\frac{S-Z}{S}$ $\frac{S}{Z}$
	(c)	$\frac{Z}{S}$	(d)	$\frac{S}{Z}$
66.	Whe	en a nut is tightened on the bolt the	nature	of stress in the bolt is
	(a) (c)	compressive bending	(b) (d)	tensile shearing
67.		imum area of tension reinforcemen		
07.	(a)	0.04 bd	(b)	0.02 bd
	(c)	0.08 bd	(d)	0.01 bd
68.	Pres (a) (b) (c) (d)	internal fluid pressure external fluid pressure equal internal and external fluid pressure equal internal and external fluid pressure	70	
69.	Min (a) (c)	imum tension steel in RCC beam no control excessive deflection prevent sudden failure	(b) (d)	o be provided to control surface cracks none of the above
70.	The (a) (c)	shear strength can be ensured in a binding wire on main bar rounded aggregates	(b) (d)	by providing high strength deformed bars stirrups
71.	In c (a) (b) (c) (d)	ase of two way slab, the deflection of primarily a function of long span primarily a function of short span independent of the spans none of the above		slab is
72.		eral ties in RCC columns are provid		
	(a)	bending moment	(b)	shear both bending moment and shear

63 64.	(a) (c) (कर्स (a)	तनन में रिवेट सामर्थ्य का ो स्तम्भ के लिए इयुलर का सूत्र अधिमान्य है		
65.	किसं	खण्ड के Z एवं S क्रमशः खण्ड मापांक एवं	संघट्य १	मापांक हैं तो उसका आकार गणांक है
	(a)	$\frac{S-Z}{Z}$		$\frac{S-Z}{S}$
	(c)	$\frac{Z}{S}$	(d)	प्रकृति होती है तनन
66.	जब ए	क बोल्ट पर नट कसा जाता है तो बोल्ट में प्र	तिबल की	प्रकृति होती है
	(a)	सम्पाडक	(b)	तनन
	(c)	वंकन	(d)	अपरूपण
67.	किसी	धरन में तनन प्रवलन का अधिकतम क्षेत्रफल	Current of	
	(a)	0.04 bd	(b)	0.02 bd
	(c)	0.08 bd	(d)	0.01 bd
68.	ਸੁਣੀਸ਼ਕ			20
		IMIC Change of the party of the last of th	-	(A D D
	(a)	लित कंक्रीट अधिक <mark>वांछनीय है किसी बेलना</mark> आन्तरिक तरल दुख	कार पाइ	प के लिए, जिस पर लगा हो
	(a)	आन्तरिक तरल दाब बाहरी तरल दाब	कार पाइ	प के लिए, जिस पर लगा हो
	(a) (b) (c)	बाहरी तरल दाब बाहरी तरल दाब बरावर आन्तरिक और बाहरी तरल दाव	कार पाइ	प के लिए, जिस पर लगा हो
	(a) (b) (c)	बाहरी तरल दाब	कार पाइ	प के लिए, जिस पर लगा हो
	(a) (b) (c) (d)	बाहरी तरल दाब बाहरी तरल दाब बरावर आन्तरिक और बाहरी तरल दाब इनमें से कोई नहीं	911	
69,	(a) (b) (c) (d) учабето	आन्तारक तरल दाब बाहरी तरल दाब बरावर आन्तारिक और बाहरी तरल दाब इनमें से कोई नहीं त सीमेन्ट कंक्रीट में न्यूनतम तनन इस्पात लग	ाने की अ	ावश्यकता होती है
	(a) (b) (c) (d) уча (а)	आन्तीरक तरल दाब बाहरी तरल दाब बरावर आन्तिरिक और बाहरी तरल दाब इनमें से कोई नहीं त सीमेन्ट कंक्रीट में न्यूनतम तनन इस्पात लग अत्यधिक विक्षेप के नियंत्रण के लिए	ाने की अ (b)	ावश्यकता होती है सतह पर दरार के नियंत्रण के लिए
69.	(a) (b) (c) (d) уча (а) (c)	आन्तीरक तरल दाब बाहरी तरल दाब बराबर आन्तारिक और बाहरी तरल दाब इनमें से कोई नहीं त सीमेन्ट कंक्रीट में न्यूनतम तनन इस्पात लग अत्यधिक विक्षेप के नियंत्रण के लिए अचानक विफलन रोकने के लिए	ाने की अ (b) (d)	ावश्यकता होती है सतह पर दरार के नियंत्रण के लिए इनमें से कोई नहीं
	(a) (b) (c) (d) प्रबलित (a) (c)	आन्तीरक तरल दाब बाहरी तरल दाब बराबर आन्तारिक और बाहरी तरल दाब इनमें से कोई नहीं त सीमेन्ट कंक्रीट में न्यूनतम तनन इस्पात लग अत्यधिक विक्षेप के नियंत्रण के लिए अचानक विफलन रोकने के लिए	ाने की अ (b) (d)	ावश्यकता होती है सतह पर दरार के नियंत्रण के लिए इनमें से कोई नहीं
69.	(a) (b) (c) (d) प्रबलित (a) (c) (कसी ध्	आन्तीरक तरल दाब बाहरी तरल दाब बरावर आन्तारिक और बाहरी तरल दाब इनमें से कोई नहीं त सीमेन्ट कंक्रीट में न्यूनतम तनन इस्पात लग अत्यधिक विक्षेप के नियंत्रण के लिए अचानक विफलन रोकने के लिए वरन में अपरूपण सामर्थ्य को निम्नलिखित द्व मुख्य छड़ों पर बन्धन तारों द्वारा	ाने की अ (b) (d) ारा सुनिश्चि	ावश्यकता होती है सतह पर दरार के नियंत्रण के लिए इनमें से कोई नहीं
69.	(a) (b) (c) (d) प्रबलित (a) (c) (कसी ध्	आन्तीरक तरल दाब बाहरी तरल दाब बराबर आन्तारिक और बाहरी तरल दाब इनमें से कोई नहीं त सीमेन्ट कंक्रीट में न्यूनतम तनन इस्पात लग अत्यधिक विक्षेप के नियंत्रण के लिए अचानक विफलन रोकने के लिए	ाने की अ (b) (d) ारा सुनिशि (b)	विश्यकता होती है सतह पर दरार के नियंत्रण के लिए इनमें से कोई नहीं चित किया जा सकता है :
69.	(a) (b) (c) (d) प्रबलित (a) (c) (कसी ध्	आन्तीरकं तरल दाब बाहरी तरल दाब बराबर आन्तारिक और बाहरी तरल दाब इनमें से कोई नहीं त सीमेन्ट कंक्रीट में न्यूनतम तनन इस्पात लग अत्यधिक विक्षेप के नियंत्रण के लिए अचानक विफलन रोकने के लिए अपानक विफलन रोकने के लिए परन में अपरूपण सामर्थ्य को निम्नलिखित द्व मुख्य छड़ों पर बन्धन तारों द्वारा गोलाकार मिलावा द्वारा	ाने की अ (b) (d) ारा सुनिशि (b)	विश्यकता होती है सतह पर दरार के नियंत्रण के लिए इनमें से कोई नहीं चित किया जा सकता है : उच्च पराभव सामर्थ्य विरूपित छड़ों द्वारा
69. 70.	(a) (b) (c) (d) प्रबलित (a) (c) (कसी (a) (c)	आन्तारक तरल दाब बाहरी तरल दाब बरावर आन्तारिक और बाहरी तरल दाब इनमें से कोई नहीं त सीमेन्ट कंक्रीट में न्यूनतम तनन इस्पात लग अत्यधिक विक्षेप के नियंत्रण के लिए अचानक विफलन रोकने के लिए अचानक विफलन रोकने के लिए यरन में अपरूपण सामर्थ्य को निम्नलिखित द्व मुख्य छड़ों पर बन्धन तारों द्वारा गोलाकार मिलावा द्वारा लेब के केस में स्लैब का विक्षेप	ाने की अ (b) (d) रा सुनिशि (b) (d)	ावश्यकता होती है सतह पर दरार के नियंत्रण के लिए इनमें से कोई नहीं चित किया जा सकता है : उच्च पराभव सामर्थ्य विरूपित छड़ों द्वारा वलयक द्वारा
69. 70.	(a) (b) (c) (d) प्रबलित (a) (c) किसी श (a) (c)	आन्तीरकं तरल दाब बाहरी तरल दाब बराबर आन्तारिक और बाहरी तरल दाब इनमें से कोई नहीं त सीमेन्ट कंक्रीट में न्यूनतम तनन इस्पात लग अत्यधिक विक्षेप के नियंत्रण के लिए अचानक विफलन रोकने के लिए अपानक विफलन रोकने के लिए परन में अपरूपण सामर्थ्य को निम्नलिखित द्व मुख्य छड़ों पर बन्धन तारों द्वारा गोलाकार मिलावा द्वारा	ाने की अ (b) (d) ारा सुनिशि (b) (d)	विश्यकता होती है सतह पर दरार के नियंत्रण के लिए इनमें से कोई नहीं चेत किया जा सकता है : उच्च पराभव सामर्थ्य विरूपित छड़ों द्वारा
69. 70. 71.	(a) (b) (c) (d) प्रबलित (a) (c) (a) (c) (a) (c)	आन्तरिकं तरल दाब बाहरी तरल दाब बरावर आन्तरिक और बाहरी तरल दाब इनमें से कोई नहीं त सीमेन्ट कंक्रीट में न्यूनतम तनन इस्पात लग अत्यधिक विक्षेप के नियंत्रण के लिए अचानक विफलन रोकने के लिए यरन में अपरूपण सामर्थ्य को निम्नलिखित द्व मुख्य छड़ों पर बन्धन तारों द्वारा गोलाकार मिलावा द्वारा लोब के केस में स्लैब का विक्षेप मूलत: बड़ी विस्तृति का फलन होता है । विस्तृति से स्वतंत्र होता है ।	ाने की अ (b) (d) रा सुनिशि (b) (d) (b) (d)	गवश्यकता होती है सतह पर दरार के नियंत्रण के लिए इनमें से कोई नहीं चित किया जा सकता है : उच्च पराभव सामर्थ्य विरूपित छड़ों द्वारा वलयक द्वारा मूलत: छोटी विस्तृति का फलन होता है । इनमें से कोई नहीं ।
69. 70. 71.	(a) (b) (c) (d) प्रबलित (a) (c) (a) (c) (a) (c) प्रबलित	आन्तरिकं तरल दाब बाहरी तरल दाब बरावर आन्तरिक और बाहरी तरल दाब इनमें से कोई नहीं त सीमेन्ट कंक्रीट में न्यूनतम तनन इस्पात लग अत्यधिक विक्षेप के नियंत्रण के लिए अचानक विफलन रोकने के लिए यरन में अपरूपण सामर्थ्य को निम्निलिखित द्व मुख्य छड़ों पर बन्धन तारों द्वारा गोलाकार मिलावा द्वारा लेब के केस में स्लैब का विक्षेप मूलत: बड़ी विस्तृति का फलन होता है । विस्तृति से स्वतंत्र होता है ।	ाने की अ (b) (d) रा सुनिशि (b) (d) (b) (d)	ावश्यकता होती है सतह पर दरार के नियंत्रण के लिए इनमें से कोई नहीं चत किया जा सकता है : उच्च पराभव सामर्थ्य विरूपित छड़ों द्वारा वलयक द्वारा मूलत: छोटी विस्तृति का फलन होता है । इनमें से कोई नहीं । निलिखित का प्रतिरोध करने के लिए किया जाता है :
69. 70. 71.	(a) (b) (c) (d) (d) (a) (c) (a) (c) (a) (c) (a) (c) (a) (c)	आन्तरिकं तरल दाब बाहरी तरल दाब बरावर आन्तरिक और बाहरी तरल दाब इनमें से कोई नहीं त सीमेन्ट कंक्रीट में न्यूनतम तनन इस्पात लग अत्यधिक विक्षेप के नियंत्रण के लिए अचानक विफलन रोकने के लिए यरन में अपरूपण सामर्थ्य को निम्नलिखित द्व मुख्य छड़ों पर बन्धन तारों द्वारा गोलाकार मिलावा द्वारा लोब के केस में स्लैब का विक्षेप मूलत: बड़ी विस्तृति का फलन होता है । विस्तृति से स्वतंत्र होता है ।	ाने की अ (b) (d) रा सुनिशि (b) (d) (b) प्रयोग निय (b)	गवश्यकता होती है सतह पर दरार के नियंत्रण के लिए इनमें से कोई नहीं चित किया जा सकता है : उच्च पराभव सामर्थ्य विरूपित छड़ों द्वारा वलयक द्वारा मूलत: छोटी विस्तृति का फलन होता है । इनमें से कोई नहीं ।

73.		einforce	ed concrete footing, pressure distribution is
	assumed to be (a) linear (c) hyperbolic	(b) (d)	parabolic none of the above
74.	Grade of concrete for reinforced concr		
	(a) M 15 (c) M 30	(b) (d)	M 10- M 20
75.		ced sho	ort column, the concrete inside the core is
	subjected to (a) bending and compression	(b)	biaxial compression
	(c) triaxial compression	(d)	none of the above
76.	In limit state design of reinforced cond	rete, de	eflection is computed by using
	(a) initial tengent modulus (b) secant modulus		55
	(b) secant modulus (c) tangent modulus		103
	(d) short and long term values of You	oung's i	modulus
77.	Fully prestressed concrete beam resist	s	0
	(a) all the vertical loads by prestress	000	
	(b) live loads by prestress(c) part of the loads by prestress		0
	(d) none of the above		
78.	For slabs spanning in two directions th	ne ratio	of span to depth should not exceed
	(a) 15	(b)	25 50
	(c) 35	(d)	30
79.	In a simply supported slab, alternate b	ars are	curtailed at
	(a) span 5	(b)	span 6
	span span	(4)	span 8
	(c) 55411	(d)	8
80.	In a under-reinforced section the value	e of ac	tual neutral axis x_a and the critical neutral axis
	$x_{\rm c}$ are related as		
	(a) $x_a = x_c$	(b)	$x_a > x_c$
	(c) $x > 2x_c$	(d)	none of the above
81.	In columns lap length is kept as		
	(a) equal to development length		
	(b) greater than development length(c) less than development length	1	
	(c) less than development length (d) none of the above		

73	. সুল	लित कंक्रीट पाद के लिए दाब वितरण	ग को माना जाता है	•
	(a)	रेखीय	(b)	* 121
	(c)	अतिपरवलीय	(d)	
			3000.00	
74.	प्रब	लित कंक्रीट के लिए कंक्रीट का वर्ग	निम्नलिखित से का	म नहीं होना चाहिए :
	(a)	M 15	(b)	
	(c)	M 30	(d)	M 20.
75.	एक	अक्षीय भारित सर्पिल लघु स्तम्भ में	सोन के अन्य के	·
	(a)	बंकन एवं संपीडन		
	(c)			द्वि अक्षीय संपीडन इनमें से कोई नहीं
-				
76.	प्रबा	लत कंक्रीट के सीमा अवस्था अभिक	ल्पन में निम्नलिखि	वत के प्रयोग से विक्षेप की गणना की जाती है :
	(a)	अरामक स्परा मापाक		COL
	(b)	보면 및 가능하는 맛있어요? 하는		53
		स्पर्श मापांक		10.
	(a)	अल्प अवधि और दीर्घ अवधि यंग	ा के मापांक का मा	п
77.	पूर्णत	ाह पूर्व प्रबलित कंक्रीट धरन प्रति <mark>रोध</mark>	करती है	
	(a)	सभी ऊर्घ्व बलों का पूर्व प्रतिबलन	दारा	2
	(b)	चल भार पूर्व प्रतिबलन द्वारा	arti	
	(c)		ारा	0
	(d)	इनमें से कोई नहीं	MI	
70	-> c-		80	
78.	(a)	शाओं में विस्तृत स्लंब के लिए विस्तृ 15	ति और गहराई का	। अनुपात निम्नलिखित से बढ़ना नहीं चाहिए :
	(4)	35	(b)	25
			(d)	
79.	एक :	राुद्धालम्बित स्लैब में, एकांतर छड़ों व	ग निम्नलिखित पर	विरतीकरण (छिन्नीकरण) किया जाता है :
	(a)	विस्तृति		विस्तृति
	(-)	5	(b)	6
	(c)	विस्तृात	(4)	विस्तृति
		0.	(d)	8
80.	अल्प	प्रबलित खण्ड में वास्तविक उदासी-	अक्ष का मान ४	, और क्रान्तिक उदासीन अक्ष का मान $x_{ m c}$ है । उनमें सबन्ध
	है		a and an analy	व जार प्रमानाक उदासान अस का मान 🗝 है। उनमें सबन्ध
	(a)	$x_a = x_c$	(b)	* > *
	(c)	$x > 2x_c$		$x_a > x_c$
			(d)	इनमें से कोई नहीं
81.	स्तम्भ	में चढ़ाव लम्बाई का मान होता है		
	(a)	विकास लम्बाई के बराबर		
	(b)	विकास लम्बाई से अधिक		
	(c)	विकास लम्बाई से कम		
	(d)	इनमें से कोई नहीं		

82.	(a) (b) (c) (d)	the 16 (300 all	of lateral ties in R least lateral dimen imes the diameter mm of the above	sion of longitudinal	bars				
83.	(a) (b) (c) (d)	thr for thr 30	ing of main bars i ee times the effect or times the effect ee times the total 0 mm	ive depth of the depth of the slat	slab of 3	or 4	50 mm w mm which	hichever is less. hever is less.	
84.	The	max	timum tensile reir	forcement in R	CC be	eam	s is given	by	
	(a)		85 bd f		(b)	0.8	5 bd	155	
	(c)	0. W	04 bD There symbols hav	e their usual me	(d) eaning	g	98 PD	Clas	
85.	(a) (b) (c) (d)	th f	our times the effective ti	etive depth of the	e slat	o or	300 mm (450 mm	whichever is less	
86	c Si	de fa	ace reinforcement	is provided in l	RCC	bea	ms when	the depth exceeds	
00	(a) (c)) ⁴	450 mm 1000 mm	0,4	(d)	1	250 mm		
			· · · · · · · · · · · · · · · · · · ·	of longitudinal b	ars p	rovi	ded in a r	rectangular RCC column is	
8			2	or rought	(b)	57.53			
	(a (c	*	6		(d)	8	3		
		•		of longitudinal l	hars t	orov	ided in a	RCC circular column is	
8				or longitudina.	(b))	4		
	100	a) c)	6		(d)		8		
5	89. S	Spac	ing between long	itudinal bars m	easur	ed a	long the	periphery of RCC columns s	hould
	r	ot e	xceed		(b		250 mm		
	(a)	150 mm		(d	-	500 mm		
		(c)	300 mm						
	00 4	C	crete for prestress	ing work should	l have	e mi	nimum co	ompressive strength of	
			200 kg/cm ²	Accounting to	(t	b)	230 1650		
		(a)	300 kg/cm ²		(0	d)	350 kg/c	cm ²	
		(c)	200 KBem		1	22		N	ASA-03

82	. प्रव	लेत सीमेन्ट कंक्रीट के पार्श्व बंधकों का अन्त	राल निम	म्नलिखित से अधिक नहीं होना चाहित .
	(a)	न्यूनतम पारव विमा		कार से सामन गर्ग होता पाहिए :
	(b)	लम्बिका छड़ के व्यास का 16 गुना		
	(c)	300 mm		
	(d)	उपर्युक्त सभी		
83.	. प्रबति	तत सीमेन्ट के स्लैब में मुख्य छड़ों का अन्तरा	ल निम्न	र्गलिवित में अधिक नहीं होता नारित
	(a)	स्लैब की प्रभावी गहराई का तीन गुना अथ	वा ३००	mm जो भी का हो ।
	(b)	स्लब का प्रभावा गहराई का चार गना अधा	at 450	mm जो भी क्या जे ।
	(c)	स्लैब को पूरी गहराई का तीन गुना अथवा	300 m	nm. जो भी कम हो ।
	(d)	300 mm		
84.	प्रबत्ति	तत सीमेन्ट कंक्रीट धरन में अधिकतम तनन प्र	बलन नि	नेम्निलिखित द्वारा दिया जाता है :
	(a)	$0.85 \frac{\text{bd}}{\text{f}_{\text{s}}}$		
		y	(b)	$0.85 \frac{f_y}{bd}$
	(c)	0.04 bD	(d)	0.08 ьД
		जहाँ संकेतकों के अपने सामान्य अर्थ हैं।		
85.	प्रबल्	त सीमेन्ट कंकीट स्लैव में विकटन ना		
	(a)	स्लैब की प्रभावी गहराई का तीन गुना या 30	छड़ा क	ज्ञ अन्तराल निम्नलिखित से अधिक नहीं होना चाहिए :
	(b)	स्लैब की प्रभावी गहराई का चार गुना अथव	7.200	n, जा भा कम हा
	(c)	स्तैव की प्रभावी गहराई का पाँच गुना अथव	T 450	mm, जा भा कम हा ।
	(d)	450 mm	11 450	ातात, जा मा कम हा ।
0.0				
86.	পৰাল	त सामन्द कक्रांट में पाश्वं फलक प्रवलन तव	लगाया	जाता है जब गहराई निम्नलिखित से अधिक होती है :
	(a) (c)	450 mm 1000 mm	(0)	750 mm
	(0)	Tool illin	(d)	1250 mm
87.	किसी	आयताकार काट के प्रबलित सीमेन्ट कंक्रीट वे	हे स्तम्भ	ा में माला कहां की जार ाम के के के
	(-)	2	(b)	व नुस्य छड़ा का न्यूनतम संख्या हाता ह
	(c)	6	(d)	
88.	वनाका	र कार राजे एउटिए की ं		
•••	(a)	र काट वाले प्रवलित सीमेन्ट कंक्रीट के स्तम्भ 2	न में मुख	
	(c)	6	(b)	8
-	_			
89.	प्रवलित	सीमेन्ट कंक्रीट स्तम्भ में परिधि पर नापी ग	ाई मुख्य	। सरियों के बीच की दूरी निम्नलिखित से अधिक नहीं होर्न
			•	हैं। । निर्माली से जीवक नहीं हीन
		150 mm	(b)	250 mm
	(c)	300 mm	(d)	500 mm
90.	पूर्व प्रबर	नन कार्य हेतु कंक्रीट की न्यूनतम संपीडन सार	प्रश्नं हो=	नी चारिक
	(a) :	200 kg/cm ²		
		300 kg/cm ²	(b)	250 kg/cm ²
		1. 5 4.	(u)	350 kg/cm ²
MSA-	03		23	SET-A
				SEI-A

Modular ratio is denoted by

(a)
$$m = \frac{280}{3 \sigma_{cbc}}$$

(b)
$$m = \frac{280}{5 \sigma_{cbc}}$$

(a)
$$m = \frac{280}{3 \sigma_{cbc}}$$

(c) $m = \frac{2800}{3 \sigma_{cbc}}$

(d)
$$m = \frac{300}{3 \sigma_{cbc}}$$

Equivalent area of a reinforced cement concrete section is 92.

(a)
$$m A_c + A_{sc}$$

(b)
$$A_c + m A_{sc}$$

(c)
$$A_c + A_{sc}$$

(d)
$$(A_c + m A_{sc})\sigma_c$$

- Effective cover of reinforcement is 93.
 - Total depth 1.5 × bar diameter (a)
 - Total depth 2 × bar diameter (b)
 - Clear cover + bar diameter (c)
 - Clear cover $+\frac{1}{2} \times$ bar diameter (d)
- The diameter of longitudinal bars in a column should not be less than 94.

Moment of resistance for a under-reinforced beam section is 95.

(a)
$$M_r = \sigma_{st} A_{st} \left(d - \frac{n}{3} \right)$$

(b)
$$M_r = \sigma_{st} A_{st} \left(d + \frac{n}{3} \right)$$

(c)
$$M_r = b n \frac{\sigma_{cb}}{2} \left(d - \frac{n}{3} \right)$$

(d)
$$M_r = b n \frac{\sigma_{st}}{2} \left(d - \frac{n}{3} \right)$$

Economical percentage of steel in RCC sections is

(a)
$$\frac{50 x^2}{\text{md } (d-x)}$$

(b)
$$\frac{50 x}{\text{md (d-}x)}$$

(c)
$$\frac{50 x^2}{2 \text{md } (d-x)}$$

(d)
$$\frac{100 x^2}{\text{md } (d-x)}$$

Where symbols have their usual meanings.

- A flow in which each liquid particle has a definite path and paths of individual particles do not cross each other, is called a
 - steady flow (a)

uniform flow (b)

stream line flow

- non-uniform flow (d)
- A flow through an expanding tube at constant rate is called
 - steady uniform flow
- steady non-uniform flow (b)
- unsteady uniform flow (c)
- unsteady non-uniform flow (d)
- A flow whose streamline is represented by a curve is called 99.
 - one dimensional flow
- two dimensional flow (b)
- three dimensional flow (c)
- none of the above (d)

ापांक अनुपात	न को	दर्शाते	6
	पांक अनुपात	पांक अनुपात को	पांक अनुपात को दर्शाते

(a)
$$m = \frac{280}{3 \sigma_{cbc}} \stackrel{?}{\leftrightarrow}$$

(b)
$$m = \frac{280}{5 \sigma_{cbc}} \grave{\forall}$$

(c)
$$m = \frac{2800}{3 \sigma_{cbc}} \dot{\vec{\pi}}$$

(d)
$$m = \frac{300}{3 \sigma_{cbc}} \stackrel{?}{\rightarrow}$$

प्रबलित सीमेन्ट कंक्रीट का समतुल्य क्षेत्रफल होता है 92.

(a)
$$m A_c + A_{sc}$$

(b)
$$A_c + m A_{sc}$$

(c)
$$A_c + A_{sc}$$

(d)
$$(A_c + m A_{sc})\sigma_c$$

(d) शुद्ध आवरण
$$+\frac{1}{2} \times छड़ का व्यास$$

6 mm

12 mm (c)

(b) 10 mm (d) 16 mm

(a)
$$M_r = \sigma_{st} A_{st} \left(d - \frac{n}{3} \right)$$

(b)
$$M_r = \sigma_{st} A_{st} \left(d + \frac{n}{3} \right)$$

(c)
$$M_r = b n \frac{\sigma_{cb}}{2} \left(d - \frac{n}{3} \right)$$

(d)
$$M_r = b n \frac{\sigma_{st}}{2} \left(d - \frac{n}{3} \right)$$

(a)
$$\frac{50 x^2}{\text{md } (d-x)}$$

(b)
$$\frac{50 x}{\text{md } (d-x)}$$

(c)
$$\frac{50 x^2}{2 \text{md } (d-x)}$$

(d)
$$\frac{100 x^2}{\text{md (d} - x)}$$

जहाँ संकेतों का सामान्य अर्थ है

एक बहाव जिसमें प्रत्येक तरल कण का एक निश्चित पथ होता है तथा व्यक्तिगत कण एक दूसरे का पथ नहीं काटते, 97. उसको कहते हैं

अपरिवर्ती बहाव (a)

एक समान बहाव (b)

सरिता रेखा बहाव (c)

असमान बहाव (d)

एक प्रसारी नलिका में स्थिर दर पर बहाव निम्नलिखित कहलाता है : 98.

- अपरिवर्ती एक समान बहाव (a)
- अपरिवर्ती असमान बहाव (b)
- परिवर्ती एक समान बहाव (c)
- परिवर्ती असमान बहाव (d)

एक बहाव जिसकी सरिता रेखा वक्र द्वारा निरूपित की जाती है, उसे निम्नलिखित कहते हैं : 99.

एक विमीय वहाव (a)

द्वि विमीय बहाव (b)

त्रिविमीय बहाव (c)

इनमें से कोई नहीं (d)

100.	. To avoid the tendency of separation at throat in a venturimeter, the ratio of the diameter throat to the diameter of pipe shall be				
		$\frac{1}{16}$ to $\frac{1}{8}$	(b)	$\frac{1}{8}$ to $\frac{1}{4}$	
		$\frac{1}{4}$ to $\frac{1}{3}$	(d)	$\frac{1}{3}$ to $\frac{1}{2}$	
101.	The	maximum efficiency of transmission			
	(a) (c)	56.76% 76.76%	(b) (d)	66.67% 86.67%	
			. ,		
102.		flow of water through a hole in the	bottor (b)		
	(a) (c)	steady flow free vortex	(d)	forced vortex	
	(0)	nee voitex	(4)		
103.	Whe	n the Mach number is more than 6,		ow is called	
	(a)	subsonic flow	(b)	sonic flow	
	(c)	supersonic flow	(d)	hypersonic flow	
104.	A po	oint in a compressible flow, where the	he vel	ocity of fluid is zero, is called	
	(a)	critical point	(b)	vena contracta	
	(c)	stagnation point	(d)	none of the above	
105	T	afterd due to audden belongeree			
105.	Loss	s of head due to sudden enlargement	LIS	V 2 _ V 2	
	(a)	$\frac{(V_1 - V_2)^2}{2g}$ $\frac{(V_2 - V_1)^2}{2g}$	(b)	$\frac{{V_1}^2 - {V_2}^2}{2g}$ $\frac{({V_2}^2 - {V_1}^2)}{2g}$	
		$(V_2 - V_1)^2$		$(V_2^2 - V_1^2)$	
	(c)	2g	(d)	2g	
		Where symbols have their usual n			
106.		w in pipes is laminar if Reynold's nu			
	(a) (c)	more than 2100 between 2100 and 3000	(b) (d)	more than 3000 more than 4000	
	(0)	between 2100 and 3000	(4)	more than 4000	
107.	Rela	ation between C _d , C _c and C _v is			
	(a)	$C_d = C_c \times C_v$	(b)	$C_d = C_c - C_v$	
	(c)	$C_c = C_d \times C_v$	(d)	$C_d = C_c - C_v$ $C_v = C_d \times C_c$	
	Wh	ere symbols have their usual meanir	igs.		
100	T	ine flow head loss due to friction is			
100	. m p	ipe flow, head loss due to friction is	K	$2f^2Jv^2$	
	(a)	2gd	(b)	$\frac{2f^2lv^2}{4gd}$ $\frac{2fl^2v^2}{gd}$	
			(1 <u>00</u> 012388)	$2fl^2v^2$	
	(c)	$\frac{4flv^2}{2gd}$	(d)	gd	
		Where symbols have their usual n	neanir	ngs.	

100.	एक वेन्चुरीमापी के कंठ में पार्थक्य की प्रवृत्ति बचाने के लिए कंठ तथा पाइप के व्यास का अनुपात निम्नलिखित होना चाहिए :				
	(a)	$\frac{1}{16} \stackrel{\stackrel{.}{\leftrightarrow}}{\stackrel{.}{\leftrightarrow}} \frac{1}{8}$		$\frac{1}{8} \stackrel{?}{\leftrightarrow} \frac{1}{4}$	
	(c)	$\frac{1}{4} \stackrel{?}{\text{H}} \frac{1}{3}$	(d)	$\frac{1}{3} \stackrel{?}{\leftrightarrow} \frac{1}{2}$	
101.	एक न	ल के द्वारा संचरण की अधिकतम दक्षता निम्नी	लिखित	होती है :	
4	(a)	56.76%	(b)	66.67%	
	(c)	76.76%	(d)	86.67%	
102.		विन कुन्डी की नली के छेद से पानी का बहाव			
	(a)	अपरिवर्ती वहाव मुक्त भ्रमिल	(b) (d)	परिवर्ती बहाव प्रणोदित भ्रमिल	
	(c)	85 3000 KA 40 ° 1000 Gaz 9600			
103.		क संख्या 6 से अधिक हो तो प्रवाह निम्नलिखि			
	(a) (c)	अवध्वनिक प्रवाह परा ध्वनिक प्रवाह	(d)	अति ध्वनिक प्रवाह	
			22 - 22		
104.	सपाड् (a)	य बहाव में कोई बिन्दु जहाँ तरल का वेग शून्य क्रांतिक बिन्दु	ह, ानम् (b)	नालाखतं कहलाता ह : जेट संरचना	
	(a)	प्रगतिरोध बिन्दु	(d)	इनमें से कोई नहीं	
105		क वृद्धि से शीर्ष हानि होती है :		Ø illo	
105.	एकार			$V_{1}^{2} - V_{2}^{2}$	
	(a)	$\frac{(V_1 - V_2)^2}{2g}$	(b)	2g	
		$(V_2 - V_1)^2$		$(V_2^2 - V_1^2)$	
	(c)	$\frac{(V_2 - V_1)^2}{2g}$	(d)	2g	
		जहाँ संकेतों का सामान्य अर्थ है।			
106.	पाइप	र्ग में बहाव स्त <mark>रीय होगा यदि रेनॉल्ड संख्या</mark> का	मान है		
	(a)	2100 से कम	(b)	3000 से अधिक	
		2100 और 3000 के बीच	(d)	4000 से अधिक	
107.		C_{c} एवं C_{v} में सम्बन्ध है			
		$C_d = C_c \times C_v$		$C_d = C_c - C_v$	
	(c)	$C_c = C_d \times C_v$	(d)	$C_v = C_d \times C_c$	
		जहाँ संकेतों का सामान्य अर्थ है ।			
108	- नल	प्रवाह में घर्षण के कारण शीर्ष हानि निम्नलिखि	ात के व	राबर होती है :	
	(a)	$\frac{flv^2}{2gd}$	(b)	$\frac{2f^2lv^2}{4gd}$	
	(ω)		(0)	4gd	
	(c)	$\frac{4 f l v^2}{2 g d}$	(d)	$\frac{2fl^2v^2}{gd}$	
		जहाँ संकेतों का सामान्य अर्थ है।		₩	

	narge Q over a rectangular wear of	length	L and height H is given by
(a)	$\frac{2}{3}\operatorname{Cd}\sqrt{2g}\ \operatorname{L}\operatorname{H}^{3/2}$	(b)	$\frac{2}{3}$ Cd L ² H $\sqrt{2gH}$
(c)	$\frac{2}{3}$ Cd H ² $\sqrt{2gL^2H}$	(d)	$\frac{3}{2}$ Cd LH $\sqrt{2gH}$

According to continuity equation

(a)
$$\frac{a_1}{v_1} = \frac{a_2}{v_2}$$
 (b) $a_1 v_1 = a_2 v_2$ (c) $a_1 v_2 = a_2 v_1$ (d) none of the above

Where symbols have their usual meanings.

111. Discharge through venturimeter is given by

(a)
$$\frac{\text{Cd }\sqrt{a_1^2 - a_2^2}\sqrt{2gh}}{a_1 \ a_2}$$
 (b) $\frac{\text{Cd }a_1 \ a_2 \ \sqrt{2gh}}{\sqrt{a_1^2 - a_2^2}}$

(c) $\frac{\text{Cd }(a_1 - a_2)\sqrt{2gh}}{a_1 + a_2}$ (d) $\frac{\text{Cd }\sqrt{a_1} \ a_2 \ \sqrt{2gh}}{a_1 + a_2}$

Where symbols have their usual rmeanings

112. Centre of pressure of an inclined plane surface is

(a)
$$\frac{I_{G} \cdot \sin^{2}\theta}{A \overline{x}} + \overline{x}$$
(b)
$$\frac{I_{G} \cdot \sin \theta}{A \overline{x}} + \overline{x}$$
(c)
$$\frac{I_{G} \cdot \sin \theta}{A \overline{x}} - \overline{x}$$
(d)
$$\frac{I_{G} \cdot \sin \theta}{A^{2} \overline{x}} + \overline{x}$$

Where symbols have their usual meanings.

113. The energy equation is given by

(a)
$$H = Z + \frac{p}{\rho g} + \frac{v^2}{2g}$$
 (b) $H = Z + \frac{p}{\rho g} - \frac{v^2}{2g}$ (c) $H = Z - \frac{p}{\rho g} + \frac{v^2}{2g}$ (d) none of the above Where the symbols have their usual meanings.

Where the symbols have their usual meanings.

114. Elevated water tanks are used to supply at required water pressure (a) to remote areas to all areas (b)

(c) for fire fighting (d) for cleaning sewers

115. The depth of centre of pressure for a vertically immersed surface from the liquid surface given by (a) $\frac{IG}{A \overline{x}} - \overline{x}$ (b) $\frac{IG}{\overline{z}} - A \overline{x}$

(c) $\frac{A \overline{x}}{IG} + \overline{x}$ (d) $\frac{IG}{A \overline{x}} + \overline{x}$ 109. लम्बाई L, ऊँचाई H वाले वीयर के ऊपर से होने वाले विसर्जन Q का मान निम्नलिखित समीकरण से दिया जाता है :

(a) $\frac{2}{3}$ Cd $\sqrt{2g}$ L H^{3/2}

(b) $\frac{2}{3}$ Cd L²H $\sqrt{2gH}$

(c) $\frac{2}{3}$.Cd H² $\sqrt{2gL^2H}$

(d) $\frac{3}{2}$ Cd LH $\sqrt{2gH}$

जहाँ संकेतों का सामान्य अर्थ है।

110. सातत्य सूत्र के अनुसार

(a) $\frac{a_1}{v_1} = \frac{a_2}{v_2}$

(b) $a_1 v_1 = a_2 v_2$

(c) $a_1 v_2 = a_2 v_1$

(d) इनमें से कोई नहीं

111. वेन्चुरीमापी में विसर्जन निम्नलिखित से दिया जाता है :

- ((a) $\frac{\text{Cd }\sqrt{{a_1}^2 {a_2}^2}\sqrt{2gh}}{a_1 a_2}$
- (b) $\frac{\text{Cd } a_1 \ a_2 \ \sqrt{2gh}}{\sqrt{a_1^2 a_2^2}}$
- (c) $\frac{\text{Cd } (a_1 a_2) \sqrt{2gh}}{a_1 + a_2}$ जहाँ संकेतों का सामान्य अर्थ है ।
- (d) $\frac{\text{Cd }\sqrt{a_1 \ a_2}\sqrt{2gh}}{a_1 + a_2}$

112. नतरूप से डूबी समतल सतह का दाव केन्द्र होता है

(a) $\frac{\mathbf{I}_{G} \cdot \sin^2 \theta}{A \,\overline{x}} + \overline{x}$

(b) $\frac{I_G \cdot \sin \theta}{\Lambda = 1 + \pi}$

(c) $\frac{I_G \cdot \sin \theta}{\Delta \overline{x}} - \overline{x}$

जहाँ संकेतों का सामान्य अर्थ है।

113. ऊर्जा का समीकरण है

(a) $H = Z + \frac{p}{\rho g} + \frac{v^2}{2g}$

- (b) $H = Z + \frac{p}{og} \frac{v^2}{2g}$
- (c) $H = Z \frac{p}{\rho g} + \frac{v^2}{2g}$ $\frac{1}{\sqrt{g}} = \frac{1}{\sqrt{g}} + \frac{1}{\sqrt{g}} = \frac{1}{\sqrt{g}}$
- (d) इनमें से कोई नहीं

114. उल्यित पानी को टंकी उचित दाव पर पानी की आपूर्ति करने के काम आती है

(a) दूरवर्ती क्षेत्र में

(b) सभी क्षेत्रों में

(c) आग बुझाने में

(d) सीवर साफ करने में

115. जल सतह से उर्घ्वाधर रूप से डूबी तल के दाव केन्द्र की गहराई होती है

(a) $\frac{IG}{\Delta =} - \overline{x}$

(b) $\frac{IG}{\overline{z}} - A \overline{x}$

(c) $\frac{A\overline{x}}{IG} + \overline{x}$

(d) $\frac{IG}{A} + \overline{x}$

116.	A stream function is given by $\psi = 3x^2 - y^3$. The magnitude of velocity at the point (2,1) be				
	(a)	12.31	(b)	12.37	
	(c)	12.40	(d)	12.23	
	1-7				
117.	In a f	free vortex, velocity			
	(a)	decreases with radius	(b)	increases with radius	
	(c)	is constant	(d)	none of the above	
	(0)	15 CONSTANT	(-)	none of the doore	
118	The /	concept of boundary layer was first	introd	luced by	
110.	(a)	Newton	(b)	Reynold	
	(c)	Prandtl	(d)	Kutter	
	(0)	Tandi	(4)	Rutter	
110	If the	velocity distribution is rectangular	the l	cinetic energy correction is	
117.		greater than zero	(b)	equal to zero	
	(a)			equal to unity	
	(c)	greater than unity	(d)	equal to unity	
120	D:				
120.		ometric head is the sum of		10	
	(a)	elevation and kinetic energy head			
	(b)	elevation and pressure head			
	(c)	kinetic energy and pressure head			
	(d)	only pressure head			
101					
121.		r's equation of motion represents			
	(a)	Conservation of mass	(b)	Conservation of energy	
	(c)	Newton's second law of motion	(d)	none of the above	
		22			
122	For	an irrotational flow the equation $\frac{\partial^2 \phi}{\partial x^2}$	<u> </u>	= 0 with usual notations is called	
122.	101	all intotational flow the equation ∂x^2	т ду	2 = 0 with asaar notations is called	
	(a)	Cauchy-Riemann equation	(b)	Reynold's equation	
	(c)	Bemoulli's equation	(d)	Laplace equation	
		G		•	
123.	A ve	clocity at which the laminar flow sto	ps is l	known as	
	(a)	lower critical velocity	(b)	higher critical velocity	
	(c)	velocity of approach	(d)	none of the above	
	(-)				
124.	Веп	noulli's equation is applicable to			
	(a)	orifice meter	(b)	venturimeter	
	(c)	pitot tube	(d)	all of the above	
	(0)	photrabe	(0)	an of the above	
125	The	flow in a pipe is neither laminar nor	turbi	lent when the Daynold's number is	
125.		less than 2000		between 2000 and 2800	
	(a)		(p)		
	(c)	more than 2800	(d)	none of the above	
	-			f	
126		ratio of inertia force to the surface to			
	(a)	Reynold's number	(b)	Froude number	
	(c)	Euler number	(d)	Weber number	

116.	(a)	त फलन है $\psi = 3x^2 - y^3$ । बिन्दु $(2, 1)$ प्र 12.31 12.40	ार गति व (b) (d)	का परिमाण होगा 12.37 12.23
	(a) (c)	मिल में, गति त्रिज्या के साथ घटती है । अचर रहती है ।	(d)	त्रिज्या के साथ बढ़ती है । इनमें से कोई नहीं ।
118.	सीमांत (a) (c)	परत की अवधारणा निम्नलिखित के द्वारा प्रस न्यूटन प्रान्डल	तुत की (b) (d)	गयी : रेनॉल्ड कुटर
119.	(a)	ग वितरण आयताकार हो तो गतिज ऊर्जा संश शून्य से अधिक इकाई से अधिक	ोधन गुण (b) (d)	गांक होता है शून्य के बरावर इकाई के बरावर
	(a) (c)	नीटर से नापा शीर्ष निम्नलिखित के बराबर होत उत्थान तथा गतिज ऊर्जा शीर्ष गतिज ऊर्जा तथा दाव शीर्ष	(b)	
	(a) (c)	तर के गति का समीकरण निम्नलिखित निर्ह्ण द्रव्यमान का संरक्षण न्यूटन के गति का द्वितीय नियम	(b) (d)	इनमें से कोई नहीं
122	2. एक (a) (c)	अघूर्णी बहाव के लिए सामान्य संकेतकों साथ काची-रीमाँ का समीकरण बरनोली का समीकरण	समीकर (b) (d)	रनाल्ड का समाकरण
12	3. जिस (a) (c)		हैं (b) (d)) उच्च क्रांतिक वेग) इनमें से कोई नहीं
	(a) (c)	पिटौट निल्का	(d) उपर्युक्त सभी
12	25. एव (a) (c)	1	(E	जब रेनॉल्ड संख्या होती है b) 2000 और 2800 के बीच में d) इनमें से कोई नहीं
1.	26. ज (a (c		(1	b) फ्राउड संख्या d) वेबर संख्या

127.	Whe	n the flow in open channel is gradua	lly va	ried, the flow is called
	(a)	steady uniform flow	(b)	steady non-uniform flow
	(c)	unsteady uniform flow	(d)	unsteady non-uniform flow
128.	The	discharge through a trapezoidal char	nnel is	maximum when
	(a)	width of the channel at top is twice	e the v	vidth at bottom
	(b)	depth of channel is equal to the wi	dth at	bottom
	(c)	the sloping side is equal to the half	of the	e width at the top
	(d)	the sloping side is equal to the wid	lth at t	he bottom
129.	The	discharge through a channel of recta	angula	r section will be maximum if
	(a)	its depth is thrice the width		
	(b)	its width is thrice the depth		
	(c)	its depth is twice the width		
	(d)	its width is twice the depth		60
130.	In a	venturiflume the flow takes place a		55
	(a)	gauge pressure	(p)	absolute pressure
	(c)	atmospheric pressure	(d)	none of the above
131.	. The	loss of head due to friction in a p	ipe of	uniform diameter in which viscous is
	plac	ce is equal to		
	()	1	(b)	4
	(a)	Re	(0)	$\frac{4}{R_e}$ $\frac{64}{R_e}$
		16		64
	(c)	R _e 16 R	(d)	R
		C C		c
		where $R_e = Reynold$ number		
132	. For	a open channel Manning's formula	is	2
	(a)	$V = \frac{1}{N} m^{1/3} i^{1/2}$	(b)	$V = \frac{1}{N} m^{2/3} i^{1/2}$
	(c)	$V = \frac{1}{N} m^{2/3} i^{1/3}$	(d)	none of the above
	•	where symbols have their usual n	neanir	ngs.
122	, it	the depth and width of a canal is 2 i	m and	3 m respectively, longitudinal slope 10
13.). II	d Chezy's constant is 60. The discha	rge sh	all be
			(P)	9.62 m ³ /sec.
		12.6 m ³ /sec.		
	(c)	$10.54 \text{ m}^3/\text{sec.}$	(a)	15.6 m ³ /sec.
134	4. Di	scharge formula for triangular weir i	is	
		6	(h)	$\frac{8}{2}$ Cd $\sqrt{2}$ 9 H ^{3/2}
	(a)	$\frac{8}{15}$ Cd $\sqrt{2g}$ H ^{5/2}	(0)	15 00 125
	,	$\frac{8}{15}$ Cd $\sqrt{2g}$ H ^{1/2}	(4)	$\frac{8}{15}$ Cd $\sqrt{2g}$ H ^{3/2} $\frac{8}{15}$ Cd $\sqrt{2g}$ H
	(C	10		10
		where symbols have their usual i	neani	ngs.

127.	जब एक खुली वाहिका में बहाव शनै:-शनै: परिवर्तित होता है, तब बहाव को कहते हैं (a) अपरिवर्ती एकसमान बहाव (b) अपरिवर्ती असमान बहाव						
	(a)			5 F			
	(c)	परिवर्ती एकसमान बहाव	(u)	AICHAIL PICE III			
128.	एक स	मलंब वाहिका में विसर्जन अधिकतम होता है ज	ाब , ,				
	(a)	वाहिका के शीर्ष की चौड़ाई उसके तली की चै	ड़ाई की	। दागुना हो । रे			
	(b)	वाहिका की गहराई उसके तली के चौड़ाई के व वाहिका की ढलवाँ भुजा शीर्ष की चौड़ाई की उ	नराबर ह आधी हो	1			
	(c) (d)	वाहिका की ढलवाँ भुजा तली की चौड़ाई के ब	ाराबर ह	Ť I			
		——— ने क्या चिक्त में निकार्यन अधिक	वप होग	। यदि			
129.	आयत (a)	ाकार काट की एक वाहिका में विसर्जन अधिक उसकी गहराई चौड़ाई की तीन गुनी हो ।	(b)	उसकी चौड़ाई गहराई का तीन गुना हो ।			
	(c)	उसकी गहराई चौड़ाई की दोगुनी हो ।	(d)				
: New York (Page)	20.00		ੜਾ ੈ ∙				
130.		न्चुरी अवनलिका में बहाव निम्नलिखित पर हो गेज दाब पर	(b)	निरपेक्ष दाब पर			
	(a) (c)	वायुमंडलीय दाब पर	(d)	इनमें से कोई नहीं			
			स है ।	उसमें घर्षण के कारण शीर्ष हानि निम्नलिखित होगी :			
131.		•		4			
	(a)	$\frac{1}{R_e}$	(b)	Re			
	(c)	16 R.	(d)	$\frac{64}{R_e}$			
		जहाँ R _e रेनॉल्ड संख्या है ।	20				
			ਕੜ ਹੈ :	5			
132		खुली वाहिका के लिए मैनिंग का सूत्र निम्नलिरि	40 6 .	$V = \frac{1}{N} m^{2/3} i^{1/2}$			
	(a)	$V = \frac{1}{N} m^{1/3} i^{1/2}$	(b)				
	(c)	$V = \frac{1}{N} m^{2/3} i^{1/3}$	(d)	इनमें से कोई नहीं			
		जहाँ संकेतों का सामान्य अर्थ है ।					
	a a a a a a a a a a a a a a a a a a a						
133	133. यदि किसी वाहिका की गहराई एवं चौड़ाई क्रमश: 2 m और 3 m है, अनुदैर्ध्य ढाल 1000 में 1 है और चेजी का स्थिरांक 60 है, तो विसर्जन होगा						
	(a)		(b)				
	(c)	2.	(d)	15.6 m ³ /sec.			
134	134. त्रिभुजाकार वीयर के विसर्जन का सूत्र है						
10		$\frac{8}{15}$ Cd $\sqrt{2g}$ H ^{5/2}	(b)	$\frac{8}{15}$ Cd $\sqrt{2g}$ H ^{3/2}			
		•••					
	(c)	$\frac{8}{15}$ Cd $\sqrt{2g}$ H ^{1/2}	(d)	$\frac{8}{15}$ Cd $\sqrt{2g}$ H			
		जहाँ संकेतों का सामान्य अर्थ हैं ।					
				CALIFORNIA STATE OF THE STATE O			

135	. For best triangular section the hydraulic radius should be			
	(a)	у	(b)	y/√8
	(c)	<u>y</u> 2	(d)	$y/\sqrt{8}$ $\frac{2}{\sqrt{3}}y$
136.	(a) (b)	freeboard in a canal is governed by size of the canal location of the canal water surface fluctuations all of the above		Λ3
137.	A ch (a) (c)	sannel aligned nearly parallel to the r side slope channel water shed channel	natura (b) (d)	l drainage of a country is called contour channel ridge channel
138.	Garra (a) (c)	ets diagram gives the graphical meth Lacey's theory Gibbs' theory	nod of (b) (d)	designing a channel based on Khosla's theory Kennedy's theory
139.	For (a) (c)	diversion of flood water of rivers, the perennial canal inundation canal	(b)	of canal constructed is ridge canal drain
140.	The rentire (a)	ratio between the area of a crop irri e period of growth is known as delta		and the quantity of water required duri
	(c)	base period		crop period
141.	The r	relation between duty D (hect/cumed), delt	a(m) and base period B (days) is
	1.1	. 0.04 D	(b)	$B = \frac{8.64 \Delta}{D}$
	(c)	$\Delta = B$ $D = \frac{8.69 \Delta}{B}$ where can be be a finite of the second secon	(d)	$\Delta = \frac{8.64 \text{ B}}{D}$
		where symbols have their usual mea		
142.	Lacey	assumed that the silt is kept in si	uspens	sion due to the normal component of
	50	had anly		
	10	and all and a second		sides only cop water surface only
143.	. According to Lacey, the scour depth is given by			
	(a)	$0.47 \left(\frac{Q}{f}\right)^{1/2} $	(b) ($0.47 \left(\frac{Q}{f}\right)^{1/3}$
	(c)	$0.47 \left(\frac{Q}{f}\right)^{1/4} \tag{6}$	d) ($0.47 \left(\frac{Q}{f}\right)^{1/3}$ $0.47 \left(\frac{Q}{f}\right)^{1/5}$
	Where Q is discharge in cumec and f Lacey's silt factor.			

135.	सबसे उपयुक्त त्रिकोणीय खण्ड की द्रवीय त्रिज्या होगी						
100.	(a)	у	(b)	y/√8			
		V	(4)	$y/\sqrt{8}$ $\frac{2}{\sqrt{3}}y$			
	(c)	2	(4)	$\sqrt{3}$			
126		हर में फ्रो बोर्ड निम्नलिखित द्वारा नियन्त्रित होत	ा है .				
130.		नहर का आमाप	(b)	नहर की अवस्थिति			
	(a) (c)	जल सतह का उतार चढ़ाव	(d)	, ,			
137.		ाहिका जो किसी क्षेत्र के प्राकृतिक अपवाह के	लगभग	। समानांतर संरेखित की गयी है । वह निम्नलिखित कहलाती			
	है :		(b)	समोच्च रेखीय वाहिका			
	(a)	पार्श्व ढाल वाहिका जलविभाजक वाहिका	(q)	कटक वाहिका			
	(c)						
138.	गैरेट र	के आरेख, वाहिका के अभिकल्पना की ग्राफीय	विधि दे	ता है जो आधारित है			
	(a)	लेसी के सिद्धान्त पर	(b)	खिसला के सिद्धान्त पर			
	(c)	गिब्स के सिद्धान्त पर	(d)	केनेडो के सिद्धान्त पर			
120	चित्रां	ों के बाढ़ जल के दिक् परिवर्तन के लिए निम्नी	लेखित ।	प्रकार की नहर बनाई जाती है :			
139.	(a)	बारहमासी नहर	(b)	कटक नहर			
	(c)	आप्लाव नहर	(d)	अपवाहिका			
	0. किसी फसल के सिंचित क्षेत्रफल तथा उसके बढ़ने के सम्पूर्ण अविध में आवश्यक जल की मात्रा का अनुपात						
140.			ड़िन क	सम्पूर्ण अवाद म जावस्वक गरा नम नाम वर्ग गर्			
		लिखित कहलाता है : डेल्टा	(b)	जलमान			
	(a) (c)	आधार अवधि	(d)	6			
	13000		1				
141	. जल	मान D (hect/cumec), डेल्टा (m) तया आ	धार का	ल B (दिन) में निम्नालाखत सम्बन्ध ह :			
	(a)	$\Delta = \frac{8.64 \mathrm{D}}{\mathrm{R}}$	(b)	$B = \frac{8.64 \Delta}{D}$			
		n e					
	(c)	$D = \frac{8.69 \Delta}{B}$	(d)	$\Delta = \frac{8.64 \text{ B}}{\text{D}}$			
		जहाँ संकेतों का सामान्य अर्थ है ।					
	142. लेसी ने कल्पना की कि निम्नलिखित द्वारा जनित भँवरों के अभिलम्ब घटक के कारण गाद जल में निलंबित रहती है :						
142		केवल तली से	(b)				
	(a) (c)	संपूर्ण परिमाप से	(b)	केवल पानी की ऊपरी सतह से			
143	. लेसं	ो के अनुसार अभिमार्जन गहराई निम्नलिखित					
	(a)	$0.47 \left(\frac{Q}{f}\right)^{1/2}$ $0.47 \left(\frac{Q}{f}\right)^{1/4}$	(b)	$0.47 \left(\frac{Q}{f}\right)^{1/3}$ $0.47 \left(\frac{Q}{f}\right)^{1/5}$			
	(-)	(0)1/4		$(0)^{1/5}$			
	(c)	$0.47 \left(\frac{Y}{f} \right)$	(d)	$0.47\left(\frac{\varsigma}{f}\right)$			
		जहाँ Q विसर्जन cumec में और f लेसी	का गाद	गुणक है।			
		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1					

Ine r	neight of the dowel above the made	level:	should not be more than
(a)	10 cm	(b)	20 cm
(c)	30 cm	(d)	40 cm
If V _o	is the critical velocity of a channel	, its s	ilt transportation power, according to Ke
(a)		(b)	$V_0^{1/2}$
(c)		(d)	V 5/2
	Ü	` '	0
Lace	y's regime velocity is proportional	to	
(a)	$R^{1/2}S^{3/4}$	(b)	R ³ / ₄ S ¹ / ₂
	R ³ / ₄ S ¹ / ₃	(d)	R ² / ₃ S ¹ / ₂
(0)		in m	K 3
	S = slope		5
			600
If the	e irrigation efficiency is 80%, conv	eyanc	e losses 20% and the actual depth of w
	15 cm		
G 32		and the second	20 cm 25 cm
(-)		(4)	25 CM
The		p is gi	ven by
(a)		(b)	outlet factor / area
(c)	area × outlet factor	(d)	none of the above
Acc	ording to Khosla's theory, the	ical h	audraulia gradient for allusial acit.
		icai i	hydraulic gradient for alluvial soils is
(a)	0.5	(b)	1.0
(c)	1.5	(d)	2.0
	The ala's theory that		
	starting point		
			intermediate point all of the above
(a ()	10.		**************************************
Tof	form a still water pocket in from tof of	anal h	nead following is constructed:
(a)	Fish ladder	(b)	Divide wall
(c)	Dam	(d)	None of the above
Wh	en an irrigation canal passes Over a	river	the statement and the statement and
is c	alled	livei,	the structure constructed at the crossin
(a)	cross drainage	(b)	aquaduct
(c)	super passage	(d)	level crossing

	2.500 to 2.500 to 100 to 1		superpassage
(C)	syphon	(a)	level crossing
Γ-A		36	
	(a) (c) If V _o is pro (a) (c) Lace (a) (c) The (a) (c) Acc equal (a) (c) Acc (a) (c) (c) Wh is c (a) (c) (c) Wh (c) (c) (d) (d) (d) (d) (e)	(a) 10 cm (c) 30 cm If V ₀ is the critical velocity of a change of is proportional to (a) V ₀ (c) V ₀ ^{3/2} Lacey's regime velocity is proportional and an electric system of the control of the cont	(c) 30 cm (d) If V ₀ is the critical velocity of a change l, its s is proportional to (a) V ₀ (b) (c) V ₀ ^{3/2} (d) Lacey's regime velocity is proportional to (a) R ^{1/2} S ^{3/4} (b) (a) R ^{1/2} S ^{3/4} (b) (b) (c) R ^{3/4} S ^{1/3} (d) where R = hydraulic mean rade is in m S = slope If the irrigation efficiency is 80%, conveyance is 16 cm, the depth of water required at the case (a) 15 cm (b) (c) 24 cm (d) The outlet discharge for a particular (a) area / outlet factor (b) (c) area × outlet factor (d) According to Khosla's theory, the critical frequal to (a) 0.5 (b) (b) (c) 1.5 (d) According to Khosla's theory, the rade minimal (a) starting point (b) (c) tail end (d) To form a still water pocket in front of canal for (a) Fish ladder (b) (c) Dam (d) When an irrigation canal passes over a river, is called (a) cross drainage (b) (b) super passage (d) When the drain is over the canal, the structure (a) aquaduct (b) (c) syphon (d)

144.	सड़क	तल के ऊपर डौले की ऊँचाई निम्नलिखित से		
	(a)	10 cm	(b) (d)	20 cm 40 cm
	(c)	30 cm		
145.			वेग V _o	है तो इसकी गाद बहा ले जाने की शक्ति निम्नलिखित के
	~	तिक होती है :	(L)	N 1/2
		V ₀	(p)	$V_0^{1/2}$ $V_0^{5/2}$
	(c)	$V_0^{3/2}$	(d)	v _o
146.	लेसी व	का प्रवृत्ति वेग निम्नलिखित के समानुपातिक हे	ता है :	
	(a)	$R^{1/2} S^{3/4}$	(b)	$R^{3/4} S^{1/2}$
	(c)	$R^{3/4} S^{1/3}$	(d)	$R^{2/3} S^{1/2}$
		जहाँ R = जलीय माध्य त्रिज्या मीटर में		
		S = ढাল		25
147.	यदि वि	संचाई दक्षता 80%, संप्रेषण हानियाँ 20% त	ाथा जलं	गियन की वास्तविक गहराई 16 cm है, तो नहर के निर्गम पर
	आव	श्यक पानी की गहराई निम्नलिखित होना चाहिए	₹:	
	(a)	15 cm 24 cm	(b) (d)	20 cm 25 cm
	(c)			
148.		विशिष्ट फसल के लिए निर्गम विसर्जन निम्निल	ाखित हा	ागा : निर्गम गुणक / क्षेत्रफल
	(a)	क्षेत्रफल / निर्गम गुणक क्षेत्रफल × निर्गम गुणक		इनमें से कोई नहीं
	(c)	Control of the Contro	NI	01
149.	खोस	ला के सिद्धान्त के अनु <mark>सार जलोढ़ मृदाओं के</mark>	लिए क्रां	तिक जलीय प्रवणता निम्नलिखित के बराबर होती है :
		0.5	(b) (d)	1.0 2.0
		1.5		
150.		ला के सिद्धांत के अनुसार फर्श का तलोच्छेदन		
	(a)	आरंभिक सिरा पुच्छ सिरा	(b)	उपर्युक्त सभी
	(c)	× / / /		
151		ल हेड के सामने शान्त जलाशय बनाने के लिए		
	(a)	फिश लैंडर	(p)	विभाजक दीवार इनमें से कोई नहीं
	(c)	ৰাঁধ		
152			जरती है	है, वह संरचना जिसका निर्माण पार बिन्दु पर किया जाता है,
		निलिखित कहलाता है :	<i>a</i> -v	्र जन्मनारी मेन
	(a)	क्रॉस अपवाहिका	(b)	
	(c)			
153	. जब	अपवाहिका नहर के ऊपर होती है तब बनाई र		
	(a)		(p)	
	(c)	साइफन	(d)) समपार
MC	A - N3		37	SET-A

154.	(a) (b)	h of the following is the correct sequenced works, distributory and minor Head works, main canal and minor Head works, main canal, branch can None of the above	Ī.	
155.	(a) (b)	requency of flow over a spillway de runoff characteristics of the drainag reservoir storage available outlet and/or diversion ca all of the above	ge area	1
156.	There (a) (c)	e will be no tension in the dam if the last third middle two-third	e resul (b) (d)	tant passes through the middle third none of the above
157.	- C	ording to Dupit, discharge of a well	in a ur	confined aquifer is
	(a)	$\frac{k (H_1^2 - H_2^2)}{2.303 \log_{10} \frac{R}{r}}$	(b)	$\frac{\pi k (H_1^2 - H_2^2)}{2.303 \log_{10} \frac{R}{r}}$
	(c)	$\frac{\pi k (H_1^2 - H_2^2)}{2.303 \log_{10} \frac{r}{R}}$ where r is the radius of well in m a	(d) and R	none of the above is the radius of influence in m.
158.	The	diameter of a tube well is R ₁ and th		
		$R_1 > R_2$		$R_1 = R_2$
	(c)	$R_1 < R_2$	(d)	none of the above
159.	. The	loss of head in a hydraulic jump is	given l	by
	(a)	$\frac{D_1 - D_2}{4 D_1 D_2}$	(b)	$\frac{(D_1 - D_2)^2}{4 D_1 D_2}$
	(c)	$\frac{(D_1 - D_2)^3}{4 D_1 D_2}$	(d)	$\frac{(D_1 - D_2)^4}{4 D_1 D_2}$
160	(a) (b) (c) (d)	most economical section of a lined a rectangular section with circular a triangular section with circular trapezoidal section with rounded both (b) and (c)	botton	m for small discharges. n for small discharges
161		relationship between void ratio e a		
	(a)	$n = \frac{e}{1 - e}$	(b)	$n = \frac{e}{1 + e}$
	(c)	$n = \frac{1-e}{e}$	(d)	$n = \frac{1 + e}{e}$
	(*)	where symbols have their usual n		C

154.	(a) (b)	ाखित में एक नहर तंत्र के भागों का कौन सा स जलशीर्ष तंत्र, वितरिका तथा लघु नहर जलशीर्ष तंत्र, मुख्य नहर तथा लघु नहर जलशीर्ष तंत्र, मुख्य नहर, शाखा नहर, वितरिव इनमें से कोई नहीं		
	एक अ (a) (b) (c) (d)	जलाशय संचय उपलब्ध निर्गम तथा/या दिक्परिवर्तन क्षमता उपर्युक्त सभी		
	(a) (c)	धि में परिणामी बल निम्नलिखित से गुजरता है अन्तिम तिहाई मध्य दो तिहाई	(b) (d)	मध्य तिहाइ इनमें से कोई नहीं
157.	(a)	ट के आधार पर अपरिरुद्ध जलधारी में नलकूप $rac{k \ (H_1^2 - H_2^2)}{rac{R}{2.303 \ \log_{10} r}}$	का निस् (b)	सरण होगा $\frac{\pi k (H_1^2 - H_2^2)}{2.303 \log_{10} \frac{R}{r}}$
	(c)	πk (H ₁ ² - H ₂ ²) 2.303 log ₁₀ r/R जहाँ r कूप की त्रिज्या मीटर में और R प्रभाव	(d) म की त्रिज	इनमें से कोई नहीं ज्या मीटर में है ।
158	एक न	नलकूप की त्रिज्या R ₁ तथा एक खु <mark>ले</mark> कुएँ <mark>की र</mark> ि	त्रज्या R	ु है, तो
100.		$R_1 > R_2$		$R_1 = R_2$
		$R_1 < R_2$		इनमें से कोई नहीं
159.	. एक द्र	दवीय कुदान में <mark>शीर्ष हानि निम्नलिखित के</mark> बरा	बर होती	है :
	(a)	$D_1 - D_2$	(b)	$\frac{(D_1 - D_2)^2}{4 D_1 D_2}$
	(c)	$\frac{(D_1 - D_2)^3}{4 D_1 D_2}$	(d)	$\frac{(D_1 - D_2)^4}{4 D_1 D_2}$
	(a) (b) (c) (d)	लघु विसर्जन के लिए वृत्तीय तली का त्रिभुज उच्च विसर्जन के लिए गोलाकार कोनों का दोनों (b) तथा (c)	ताकार व नाकार व	ਗਟ ਗਟ
161	. रिक्त	ाता अनुपात e और सरन्ध्रता n में सम्बन्ध है		۵
		$n = \frac{e}{1 - e}$		$n = \frac{e}{1 + e}$ $1 + e$
	(c)	$n = \frac{1 - e}{e}$ जहाँ संकेतों का सामान्य अर्थ है ।	(d)	$n = \frac{1+e}{e}$

			of 20 (b)	00 percent. If $G = 2.6$, the void ratio is 2.6
	(a) (c)	1.3 5.2	(d)	none of the above
	temp	ne determination of water content the erature of 100°C	he soi (b)	Il sample is heated for a period of 24 hrs
	(a) (c)	100 °C ± 10 °C	(d)	none of the above
		submerged unit weight for complete		
10				
	(a)	$\frac{(G+e) r_{w}}{1+e}$	(b)	$\frac{(1+e) r_{w}}{1+e}$
		$(G-1) r_w$		$\frac{(1-e)r_{w}}{G+e}$
	(c)	$\frac{(G-1) r_{w}}{1+e}$	(d)	G+e
		Where G = specific gravity of soi	1	6
		e = void ratio		0,3
		r _w = unit weight of water		650
165	The	uniformity coefficient of soil with u	sual r	notation is defined as
105.	THE	D ₃₀		<u>D</u> ₄₀
	(a)	D ₁₀	(b)	\overline{D}_{50}
		D		
	(c)	$ \frac{D_{30}}{D_{40}} \\ \frac{D_{50}}{D_{60}} $	(d)	$\frac{\mathrm{D}_{60}}{\mathrm{D}_{10}}$
			2	
166.		ch one in the following list does not		
	(a)	Bentonite	(p)	Kaolinite
	(c)	Rock flour	(d)	Fat clay
167.	To d	etermine the liquid limit, in the flow	v curv	ve the water content is plotted on
	(a)	x-axis		y – axis
	(c)	on any axis	(d)	none of the above
168.	As p	er soil classification system silty sa	nd is	denoted by the symbol
	(a)	SW	(b)	SP
	(c)	SM	(d)	SC
169.	The	exit gradient of the seepage water the	hroug	h a soil is
	(a)	slope of flow line	J	
	(b)	slope of equipotential line		
	(c)		-	
	(d)	ratio of the head loss to the length	of th	e seepage
170.	Acti	ive earth pressure of a soil is defined	d as th	ne lateral pressure exerted by the soil wh
	(a)	the retaining wall is at rest		- T
	(b)	the retaining wall tends to move a	Market Comments	from the backfill
	(c)	the retaining wall moves in the so	il	
	(d)	none of the above		
orem			40	
SET	-A		40	

162.	किसी प्	पूर्णत: संतृप्त मृदा का जलांश 200 प्रतिशत है	। यदि (G = 2.6, तो रिक्तता अनुपात होगा
		1.3	(b)	2.6
	(c)	5.2	(d)	इनमें से कोई नहीं
163.	किसी म	मदा प्रतिदर्श का जलांश ज्ञात करने के लिए उर	ते 24 घं	टे गर्म किया जाता है निम्नलिखित तापमान पर :
100.	(a)	100 °C	(b)	110 °C ± 10 °C
	(c)	100 °C ± 10 °C		इनमें से कोई नहीं
164		प से संतृप्त मृदा के लिए निमग्न इकाई भार नि	म्नलिरि	वत होता है :
104.	20160			(1 + e) r
	(a)	$\frac{(G+e) r_{w}}{1+e}$	(b)	$\frac{(1+e) r_{w}}{1+e}$
	(c)	$\frac{(G-1) r_{w}}{1+e}$	(d)	$\frac{(1-e) r_{w}}{G+e}$
		जहाँ G = मृदा का विशिष्ट गुरुत्व		5
		e = रिक्तता अनुपात		CO
		${f r}_{f w}=$ जल का इकाई भार		5
165.	सामान	य संकेतकों में किसी मृदा का समानता गुणांक	निम्नलि	निखत द्वारा परिभाषित किया जाता है :
2001				
	(a)	$\frac{D_{30}}{D_{40}}$	(b)	$\frac{D_{40}}{D_{50}}$
	(c)	$\frac{D_{50}}{D_{60}}$	(d)	$\frac{D_{60}}{D_{10}}$
	, ,		ME	
166.		लेखित सूची में किसमें सुघट् <mark>यता नहीं होती ?</mark>	(h)	केओलिनाइट
	(a)	बेन्टोनाइट पत्थर की बुकनी	(b)	मो <mark>टी मृत्तिका</mark>
	(c)		1	
167.	द्रव सं	ोमा ज्ञात करने के <mark>लिए प्रवाह वक्र में</mark> जलांश व		
	(a)	x – अक्ष पर	(b)	y — अक्ष पर ————————————————————————————————————
	(c)	किसी भी अक्ष पर	(d)	इनमें से कोई नहीं
168.	मृदा व	वर्गीकरण प्रणाली में सिल्टी बाली का संकेतक	है	
	(a)	SW	(b)	SP
	(c)	SM	(d)	SC
169.	किसी	मृदा में <mark>जल</mark> निस्यंदन की <mark>निर्</mark> गम प्रवणता निम्न	निविद	न होती है :
	(a)	बहाब रेखा का ढाल		
	(b)	सम विभव रेखा का ढाल		
	(c)	सकल शोर्ष तथा निस्यंदन की लम्बाई का अ		
	(d)	शोर्ष व्यास तथा निस्यंदन की लम्बाई का अ	नुपात	
170.	. किसी	। मृदा का सक्रिय मृदा दाब मृदा द्वारा लगाये ग	ये पार्श्व	दाव द्वारा परिभाषित किया जाता है, जब
	(a)	धारक भित्ति विश्राम की स्थिति में हो ।		
	(b)	धारक भित्ति पृष्ठ भरण से दूर की ओर संच	लन में उ	प्रवृत्त हो ।
	(c)	धारक भित्ति पृष्ठ भरण की ओर संचलित ह		
	(d)	इनमें से कोई नहीं ।		

(a) (b) (c) (d)	the coefficient of permeability is co	nstant	
ex((a) (c)	ultimate bearing capacity allowable bearing capacity	(b) (d)	safe bearing capacity none of the above
fo (a) (c)	oting, the bearing capacity of the soft in one-fourth) two-third	(b) (d)	three-fourth
(a	where N _q , N _r and N _c are bearing of	(d)	1.2 C·N _c ty factors. C is the cohesion.
10	a) piping c) quick sand	(b) (d)	liquefaction
(defined by the symbol (a) MH (c) OH	(b) (d)	n inorganic silts of high compressibilit CH OI
	For flow through soils to be laminar the (a) 2800 to 2000 (c) 1000 to 1	(d)	less than 1
178.	The relationship between discharge ve (a) $v_s = \frac{v}{n}$ (c) $v_s = v.n$	(b)	v and the seepage velocity v_s is $v_s = \frac{v}{e}$ $v_s = v.e$
	An isobar is a curve which joins point (a) horizontal stress (c) shear stress	(d)	none of the above
180.	Newmarks charts can be used to deter (a) circular shape (c) rectangular shape	minat (b) (d)	
959		42	1

l71.	टरज़ार्ग	ो के संघनन सिद्धांत की मान्यता है		
	(a)	मृदा संतृप्त है ।		संपीडन एक विमीय है ।
		पारगम्यता गुणांक अचर है ।	(d)	उपर्युक्त सभी ।
172.	वह आं	धिकतम इकाई दाब जो एक मुदा, अपरूपण मे	ं विदार	ग के बिना अथवा संरचना के अत्यधिक विक्षेप के बिना सह
. ,		है, उसे कहते हैं		
	(a)	चरम आधार धारिता		सुरिक्षत आधार धारिता
	(c)	अनुज्ञेय आधार धारिता	(d)	इनमें से कोई नहीं
173.	जब भं	ौम जल स्तर. आधार के नीचे आधार के चौ	डाई के	आधे के बराबर गहराई पर हो तो मृदा की आधार धारिता
		लखित के बराबर हो जाती है :		
	(a)	एक चौथाई	(b)	आधी
		दो तिहाई	(d)	तीन चौथाई
174.	टेरजाग	î <mark>ो के अनुसार मृत्तिका की शुद्ध चरम</mark> आधार-ध	गरिता नि	नम्नलिखित होती है :
	(a)	C.N.	(b)	C·N _r
	(c)	C·N _c	(d)	1.2 C·N _c
	. ,	जहाँ N_q , N_r और N_c आधार धारिता गुणांव	ा हैं त	ट संसंजन है।
		5. The state of th		अचानक अपरूपण प्रतिबल खो देती है और द्रव की भाँति
175.	वह प्र	क्रिया जिसके द्वारा एक संतृष्त भूदा बाहरा ब ार करने लगती है, कहलाती है	ici 4 .	अयानक अपरूपण अस्तिय वा प्रता है जार प्रम पन नाम
	(a)	पाइपिंग	(b)	सर्कना
	(c)	बलुआ दलदल	(d)	
157		य मानक मृदा वर्गीकरण प्र <mark>णाली के अनुसार</mark> उ		मीदराता के अकार्वितक मिल्ट का मंकेतक है
170.	भारता (a)	ाय मानक मृदा वंगाकरण प्रणाला के अनुसार र MH	(b)	CH
	(c)	OH		OI
177		में जल प्रवाह को स्तरीय हो <mark>ने</mark> के लिए रेनॉल्ड स	रंख्या हो	नी चाहिए
1//.	(a)	2800 से 2000	(b)	2000 से 1000
	12	1000 से 1	(d)	1 से कम
178		र्नन वेग v और रिसन वेग v _s में संबन्ध होता है		
1/0.				γ
	(a)	$v_s = \frac{v}{n}$	(b)	$v_{\rm s} = \frac{v}{\rm e}$
	(c)	$v_{s} = \frac{v}{n}$ $v_{s} = v.n$	(d)	$v_s = v.e$
170		ाब वह वक्र है जो निम्नलिखित एक से बिन्दुओं	ं को जो	डता है :
117.	(a)	क्षैतिज प्रतिवल		ऊर्ध्वाधर प्रतिबल
	(c)	अपरूपण प्रतिबल		इनमें से कोई नहीं
180.		ाधर प्रातबल ज्ञात करन के लिए न्यूमाक के प्र किता है :	माव चा	र्ट का प्रयोग निम्नलिखित प्रकार के भारित क्षेत्र के लिए किया
		कता ह : वृत्तीय आकार	(b)	वर्गाकार
	(a) (c)	भूताय जाकार आयताकार	(d)	किसी भी आकार
	(0)	- 0 00 703	(-)	
MS	A-03		43	SET-A

181.	(a)	displacement	(b)	shear load
	(c)	compressive load	(d)	all (a), (b) and (c)
182.	In the	e triaxial test the major principal stre deviator stress	ess is (b)	cell pressure
	(c)	deviator stress + cell pressure	(d)	none of the above
183.	The s			conducting unconfined compression te
	(a) (c)	undisturbed sample both (a) and (b)	(b)	remoulded sample none of the above
184				bottom of a soil exploration pit shoul
104.	(a)	1.0 m × 1.0 m	(b)	
	(c)	$1.2 \text{ m} \times 1.2 \text{ m}$	(d)	0.9 m × 1.2 m
185.	Shall	ow pits should be provided with lat-		
	(a)	2 m	(b)	2.5 m
	(c)	3.0 m	(d)	3.5 m
186.		gross bearing capacity of a 1.5 m w = 20 kN/m ² , what is the net bearing o		trip footing at a depth of 1.0 m is 440
	(a)	410 kN/m ²		420 kN/m ²
	(c)	460 kN/m ²	- 10 · C	none of the above
187.	As p	er IS: 456 - 2000 actual measure	valu	es of modulus of elasticity Ec may b
	from			
		$E_s = 5000 \sqrt{f_{ck}}$ (with usual notation		
	(a)	± 25% ± 10%	(b) (d)	± 5% ± 20%
	(c)			
188.		rees of freedom of a rigid block four		
	(a) (c)	4	(b) (d)	3 6
100		79		
189.	(a)	undation is considered as shallow if exceeds the width	(b)	equal to the width
	(c)	does not exceed the width	(d)	none of the above
190.	Cons	sider the following statements about	majo	or uses of piles :
	(i)	to carry vertical loads	(ii)	to resist uplift loads
	(iii)	to resist horizontal loads	(iv)	to resist inclined loads
		of these, the correct statements are (i) and (ii)	(b)	(i), (ii) and (iii)
	(a) (c)	(i), (ii), (iii) and (iv)	(d)	(i) and (iii)
				- (8) (3) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1

181	. सीधा	। अपरूपण परीक्षण में प्रोविंग वलय का प्रयोग	निम्नलि	खित नापने के लिए किया जाता है :
	(a)	विचलन	(b)	अपरूपण भार
	(c)	संपीडन भार	(d)	सभी (a), (b) और (c)
182	. त्रिआ	क्षीय परीक्षण में बड़ा मुख्य प्रतिबल होता है :		
	(a)	अपसरण कारक प्रतिबल	(b)	सेल दाब
	(c)	अपसरण कारक प्रतिबल + सेल दाब	(d)	
183	. किसी	मृदा की संवेदनशीलता ज्ञात हो सकती है, नि	म्बिगिव	ਰ ਪਰ ਪਰਾਮਿਕ ਸੰਮੀਟਕ ਸਮੀਆਸ ਵਕਤੇ .
	(a)	अक्षुव्य प्रतिदर्श		रिमोल्डेड प्रतिदर्श
	(c)	दोनों (a) और (b)	100	इनमें से कोई नहीं
184.	. भारतं	ोय मानक IS : 4453 के अनुमार घटा अन्ते।	गा। सने	की तली पर कार्यकारी स्थान निम्नलिखित होना चाहिए :
	(a)	1.0 m × 1.0 m		43 तला पर कायकारा स्थान निम्नालाखत होना चाहिए :
	(c)	1.2 m × 1.2 m	(d)	
185.		गढ़ों में पार्शिवक रोक लगाना चाहिए जब उसर	की गहरा	र्इ निम्नलिखित से अधिक हो जाये :
	(a)	2 m		2.5 m
	(c)	3.0 m	(d)	3.5 m
186.	एक 1	.5 m चौड़े पट्टी नींव का 1.0 m गहराई पर	सकल १	भारण क्षमता 440 kN/m^2 है । यदि $r = 20 \text{ kN/m}^2$ हो तो
	उसर्क	ो शुद्ध धरण क्षमता होगी		THE RIVING OF THE PARTY OF THE
	(a)	410 kN/m ²	(b)	420 kN/m ²
	(c)	460 kN/m ²	111/2	इनमें से कोई नहीं
105			7.0	
187.	भारता	य मानक सहिता IS : 456 - 2000 ह	त अनुस	तार वास्तव में मापे गये प्रत्यास्थता गुणांक E का मान
		न्य संकेतकों में) $E_s = 5000 \sqrt{f_{ck}}$ से अन्त	22.00	0.000
	(c)	± 25% ± 10%	(p)	±5%
	(0)	210%	(d)	± 20%
188.		ढ़ ब्लॉक मशीन नींव के स्वाभाविक अंश होते	हैं	
	(a)	2	(b)	3
	(c)	4	(d)	6
189.	किसी '	नींव को उथला मानते हैं, यदि उसकी गृहराई		
	(a)	चौड़ाई से अधिक हो	(b)	चौड़ाई के बराबर हो ।
	(c)	चौड़ाई अधिक न हो ।	5 85	इनमें से कोई नहीं ।
100			257 - 2,7542	28
190.		के मुख्य उपयोगों के बारे में निम्नलिखित कथ		(M) (M)
	(i)	ऊर्ध्वाधर भार वहन करना ।	(ii)	उत्थापन भार का प्रतिरोध करना ।
		क्षैतिज भार का प्रतिरोध करना ।	(iv)	झुके भार का प्रतिरोध करना ।
		में सही कथन निम्नलिखित है :		
	(a)	(i) और (ii)	(b)	(i), (ii) और (iii)
	(c)	(i), (ii), (iii) और (iv)	(d)	(i) और (iii)
MSA.	03		10012011	

	191.	 A sample of wet soil has a mass of 12 kg. On oven drying the mass reduces to 10 kg water content of the soil is 			
		(a) (c)	2.0% 16.67 %	(b) (d)	20.0% none of the above
	192.	(i) (ii) (iii)	rberg limit tests were carried of Liquid Limit = 40% Plastic Limit = 25% Shrinkage Limit = 10% value of plasticity index is 30% 25%	on a certain s (b) (d)	soil with the following results: 15% 40%
	193.	The (a) (c)	constant head permeameter is Silty soil Coarse grained soils	suitable for (b) (d)	Organic soil Clay
	194.	are l			tient of horizontal and vertical permeated isotropic soil the value of coeffic $\frac{K_x}{K}$
		(c)	$\sqrt{\frac{K_z}{K_x}}$	(d)	$\sqrt{\frac{K_x}{K_z}}$
	195.	The (a) (c)	Westerguard analysis is suitable homogeneous soil cohesionless soil	ole for (b) (d)	cohesive soil stratified soil
;	196.	A pil (a) (c)	le which obtains most of its ca end bearing pile composite pile	rrying capac (b) (d)	city at the base of pile is known as friction pile all of the above
	197.		is the radius of failure arc and ion circle is R tan \$\phi\$	d φ is the an	R sin φ
		(c)	R cos φ	(d)	$\frac{R}{\phi}$
	198.	Coef (a) (c)	ficient of consolidation is used time rate of settlement preconsolidation pressure	d for calcula (b) (d)	total settlement stress in soil
	199.	Effect (a) (c)	ctive stress in a soil is the stress soil mass as a whole air present in the voids	ss carried by (b) (d)	the pore water present in the soil solids present in the soil mass
:	200.	In-si (a) (c)	tu vane shear test is conducted cohesive soil silty soil	l to determin (b) (d)	ne the shear strength of non-cohesive soil sandy soil

191.	एक भी	गि मृदा प्रतिदर्श का मास 12 kg है । भट्टी मे	में गर्म करने	पर उसका घटा मास 10 kg हो गया । मृदा का जलांश है
	(a)	2.0%	(b)	20.0%
	(c)	16.67%	(d)	इनमें से कोई नहीं
192.	किसी	मृदा पर किए गये एटरबर्ग परीक्षण के परिणा	म निम्नलि	खित हैं :
	(i)	द्रव सीमा = 40%		
	(ii)	सुघट्य सीमा = 25%		
	(iii)	संकुचन सीमा = 10%		
		n सुघट्यता सूचकांक है :	(L)	150%
	(a)	30%	(b)	15% 40%
	(c)	25%		
193.		शीर्ष पारगम्यता नापी निम्नलिखित के लिए		ता ह : कार्वनिक मृदा
	(a)	सिल्टी मृदा	(b)	मृत्तिका
	(c)	मोटे कर्णों की मृदा		
194.	किसी	असमदेशिक मृदा के क्षेतिज और ऊर्ध्वाधर	(पारगम्यत	ा गुणांक क्रमश: K _x और K _z हैं । समदैशिक अन्तरित मृदा
	के पा	रगम्यता गुणांक का मान होगा		5
	(a)	$\frac{K_z}{K_x}$	(b)	K _x
		K _x	(5)	K ₂
		$\sqrt{\frac{K_z}{K_z}}$	(d)	$\frac{K_x}{k_x}$
	(c)	K_x	(4)	V K _z
195.	वेस्टर	गार्ड विश्लेषण उपयुक्त है		
175.	(a)	समांगी मृदा के लिए	(b)	ससंजक मृदा के लिए
	(c)	अससंजक मृदा के लिए	(d)	स्तरित मृदा <mark>के</mark> लिए
196	वह र	श्रूणा जो अपनी अधिकां <mark>श धारण क्षमता स्य</mark> ू	णा के आध	गर से प्राप्त करता है, उसे कहते हैं
170.		अंत्य धारक स्थूणा	(b)	
	(c)	संग्रथित स्थूणा	(d)	उपर्युक्त सभी
107		विफलन नाए की विजया R है तथा मदा का	आन्तरिक १	घर्षण कोण φ हो तो घर्षण वृत्त की त्रिज्या होगी
197	(a)	R tan o	(b)	R sin φ
	- 2		(d)	<u>R</u>
	(c)	R cos \$\phi\$	(4)	ф
198	. संघ-	ान गु <mark>णां</mark> क का प्रयोग निम्नलिखित की गणन	ा करने में ह	ग्नेता है :
	(a)	निषदन का समय दर	(b)	सकल निषदन
	(c)	पूर्वसंघनन दाव	(d)	मृदा में प्रतिबल
199	मदा	में प्रभावी प्रतिबल निम्नलिखित द्वारा वहनि	त प्रतिबल	होता है :
1,,,	(a)	सम्पूर्ण मृदा संहति द्वारा	(b)	रंध्रों में उपस्थित रंध्रजल द्वारा
	(c)	रिक्ति में उपस्थित वायु द्वारा	(d)	" ~ ' "
200		क्षित्र में वेन अपरूपण परीक्षण कर निम्नर्लि।	खत का अ	परूपण सामर्थ्य ज्ञात किया जाता है :
200	(a)	Care	(b)	
	(c)	n n -	(d)	**************************************
			15. 5	SET-A
MS	A-03		47	SE1-A