UPPSC AE

Previous Year Paper (Mechanical) Paper-II 2007

MECHANICAL ENGINEERING

Paper-II

- 1. An inventor claims to have developed an engine that takes in 105 MJ at a temperature of 400 K, rejects 42 MJ at a temperature of 200 K and delivers 15 kWh of mechanical work. Is this engine feasible?
 - (a) Yes
 - (b) No
 - (c) The information given is not sufficient to find answer.
 - (d) May be or may not be depends upon several factors.
- 2. In a reversible adiabatic process the ratio (T_1/T_2) is equal to

	Σ	<i>i</i> – 1
(a)	(P_1/P_2)	γ

(b) $(V_1/V_2)^{\frac{\gamma-1}{\gamma}}$

(c)
$$(V_1 V_2)^{\frac{\gamma - 1}{2\gamma}}$$

(d) $(V_2/V_1)^{\gamma}$

Where γ is ratio of specific heats?

- 3. A frictionless heat engine can be 100% efficient only if the exhaust temperature is
 - (a) equal to its input temperature
 - (b) less than its input temperature
 - (c) 0 °C
 - (d) 0 K
- 4. The thermal efficiency of a theoretical Otto cycle
 - (a) increases with increase in compression ratio
 - (b) increases with increase in isentropic index γ
 - (c) does not depend on the pressure ratio
 - (d) follows all the above
- 5. Which of the following constituents of a fuel does not contribute to its calorific value on combustion?
 - (a) Carbon

(b) Hydrogen

(c) Sulphur

- (d) Nitrogen
- **6.** Which of the following is an irreversible process?
 - (a) An isothermal process

(b) An isentropic process

(c) An isobaric process

- (d) An isenthalpic process
- 7. The work in a closed system undergoing an isentropic process is given by

(a)
$$\frac{\gamma}{\gamma - 1}$$
 mR $(T_1 - T_2)$

(b) $\frac{\gamma - 1}{\gamma} \text{ mR } (T_1 - T_2)$

$$(c) \quad \frac{1}{\gamma - 1} \ mR \ (T_1 - T_2)$$

(d) $\frac{1}{\gamma - 1} m (T_1 - T_2)$

(Notations used have usual meaning)

8.	The Cla	ausius equation for a reversible cycle	is	
	(a) •	$\frac{\delta Q}{T} < 0$	(b)	$\oint \frac{\delta Q}{T} = 0$
	(c) •	$\frac{\delta Q}{T} > 0$	(d)	$\oint \frac{\delta Q}{T} \le 0$
	(Notation	ons used have usual meaning.)		
9.	(a) w (b) w (c) w	critical point, any substance vill exist in all the three phases simul- vill change directly from solid to vap- vill lose phase distinction between liq- vill behave as an ideal gas	our	•
10.	Vander	Waal's equation may be written as		
	(a) (j	$p + \frac{a}{V})(V - b) = RT$	(b)	$(p + \frac{a}{V^2})(V - b) = RT$
	(c) (j	$p + \frac{a}{V^2} (V^2 - b) = RT$	(d)	$(p + \frac{a}{V^2})(V^2 - b) = RT^2$
	(Notation	ons used have usual meaning.)		455
11.	_		roduc	es 5 kW of power. The efficiency of the
	engine (a) 2	18 15%	(b)	27.5%
	` ′	0%	(d)	33%
12.			ng wo	ork equal to 16 kJ upon it. The change in
		l energy is -16 kJ	(b)	Zero
		6 kJ	(d)	32 kJ
13.				06 m ³ at constant pressure of 1MPa and
				nge in internal energy of the mixture is
	* *	0 kJ 4 kJ	(b) (d)	54 kJ 114 kJ
			, ,	
14.	The air is	standard efficiency of an Otto cycle	for a	compression ratio of 5 and index $\gamma = 1.4$
	(a) 6	0%	(b)	50%
	(c) 4	7.47%	(d)	40%
15.	Steam o	coming out of the whistle of a pressu	re coo	ker is
		ry saturated vapour	(b)	wet vapour
	(c) s	uper heated vapour	(d)	ideal gas
16.		ent heat of steam with increase in pre		
		oes not change	(b)	increases
	(c) d	ecreases	(d)	remains unpredictable

17. A system is taken from state A to state B along two different paths 1 and 2. The heat absorbed and work done by the system along these paths are Q1 and Q2 and W1 and W2 respectively, then

(a)
$$Q_1 = Q_2$$

(b)
$$W_1 + Q_1 = Q_2 + W_2$$

(c)
$$W_1 = W_2$$

(d)
$$Q_1 - W_1 = Q_2 - W_2$$

Steam flows through an adiabatic steady flow turbine from state 1 to state 2. with respect to a base temperature T_0 , the unavailable energy is

(a)
$$T_0 (I_1 - I_2)$$

(b)
$$T_0 (S_1 - S_2)$$

(c)
$$(I_1 - I_2) - T_0 (S_1 - S_2)$$

(d)
$$I_2 + I_0 (S_1 - S_2)$$

The value of compressibility factor for a vander Waals gas is equal to **19.**

The slope of an isobar on the h-s coordinates is equal to the 20.

- Gibbs function
- (b) Helmholtz function
- (c) Pressure
- Absolute saturation temperature at that pressure (d)

A carnot heat pump absorbs heat from atmosphere at 10 °C and supplies it to a room maintained at 25 °C. A temperature difference of 5 °C exists between working fluid and atmosphere on one hand, and the required room temperature on the other hand. If the heat pump consumes 1 kW power, the heat delivered to the room will be

22. For the same compression ratio and same heat rejection, the efficiency of Otto cycle is

- same as that of Diesel Cycle (a)
- not comparable to that of Diesel Cycle (b)
- less than that of Diesel Cycle (c)
- more than that of Diesel Cycle (d)

23. Choose the correct altenative:

- First law for a closed system undergoing a cycle $Q W = \Delta E$
- 2. Two reversible adiabatic paths can not intersect each other.
- 3. If two fluids are mixed, the entropy of universe remains unchanged.
- 4. Clausius statement – Heat can flow from low to high temperature body without the aid of external work.
- 5. The efficiency of a reversible heat engine is independent of nature of working substance undergoing a cycle.
- All statements are true. (a)
- Statements 2 and 5 are true. (b)
- Statements 1, 3, 4 and 5 are true. (c)
- Statements 1, 3 and 5 are true. (d)

24.	The (a) (c)	unit of work is kW kW/h	(b) (d)	kWh kJ/s
25.	For c (a) (c)	complete burning of 1 kg of carbon, the 2.67 kg 12.7 kg	e air re (b) (d)	equired will be about 11.6 kg 14.5 kg
26.	The (a) (b) (c) (d)	efficiency of an ideal Carnot engine de working substance the temperature of the source only the temperature of the sink only the temperature of both source and si		on
27.	Kelv (a) (c)	in Planck's law deals with conservation of energy conservation of mass	(b) (d)	conservation of heat conversion of heat into work
28.	The (a) (c)	gas constant R is equal to the sum of two specific heats. product of two specific heats.	(b) (d)	difference of two specific heats. ratio of two specific heats.
29.	The (a) (b) (c) (d)	main cause of the irreversibility is Mechanical and Fluid Friction Unrestricted expansion Heat transfer with a finite temperatur All of the above	re diffe	erence
30.	Whic	ch of the following is not a property of	therm	nodynamic system ?
	(a) (c)	Pressure Heat	(b) (d)	Energy Volume
31.	(a) (b)	on's reaction turbine has fixed blades only moving blades only identical fixed and moving blades fixed and moving blades	shape	S.
32.	The (a) (c)	change in entropy is zero during Hyperbolic process Reversible adiabatic process	(b) (d)	Constant pressure process Polytropic process
33.	Fuel (a) (c)	injector is used in steam engines spark ignition engines	(b) (d)	gas engines compression ignition engines
34.	Carn (a) (b) (c) (d)	ot cycle is not considered as a practica its p – V diagram is narrow its thermal efficiency is low heat addition takes place at high pres heat rejection takes place at high tem	sure	

35.	or removed in (a) Enthal	in a reversible	substance which		Entropy External Energy
36.	(a) Heat	law of thermod al Energy	ynamics defines	(b) (d)	Enthalpy Entropy
37.	In an irrever (a) loss of (c) gain o		nere is a	(b) (d)	no loss of heat no gain of heat
38.	The most pra (a) Carno (c) Rankin		power cycle is	(b) (d)	Joule Binary
39.	List – (a) Heat (b) Energy (c) Entrop	Y – – – – – – – – – – – – – – – – – – –	List – Point function Path function Second law of t Path function	П	5
40.	(a) consta(b) consta(c) consta	ant volume and ant volume and ant pressure and	at constant press at constant volu I at constant volu I at constant press	sure resume resume re	spectively spectively
41.	(a) the du(b) the flo(c) the du	ct is two <mark>dim</mark> er ow is laminar ct is <mark>frictionles</mark>	(1)	2	
42.	(a) flow s (b) flow s (c) veloci	hould be lamin hould be turbul ty profile shoul	lent		rection of flow.
43.	space is calle (a) Steady	ed	the velocity at	any gi (b) (d)	ven time does not change with respect to Compressible flow Rotational flow
44.35.	(a) irrotat (c) three c	ional flow only dimensional flo	w only	(b) (d)	e principle of continuity is applicable to two dimensional flow only uniform flow only डाली या निकाली जाती है, बढ़ाता या घटाता है
Serie	s-A		10	0	SES-06

45.	-	ot tube is used for measuring	<i>(</i> 1.)	c a
	(a) (c)	velocity of flow flow rate	(b) (d)	pressure of flow total energy
	(0)	now rate	(u)	total energy
46.	Mach (a)	number is defined as the square root of inertia force to the pressure force	of the	ratio of the
	(b)	inertia force to the surface tension for	ce	
	(c) (d)	inertia force to the elastic force none of the above		
	(u)	none of the above		
47.		eamlined body is defined as a body about		
	(a) (c)	the drag is zero the flow is along streamlines	(b) (d)	the flow is laminar the flow separation is suppressed
	, ,	_	, ,	
48.	Whic (a)	h is the flow measuring device through Orifice plate	n whic (b)	ch fluid does not flow ? Venturimeter
	(c)	Pitot tube	(d)	Elbow meter
40	D1-	inhi a mada da falimanai and analasi		
49.	-	ole which depends on maximum follow		sed for determining the expression for a number of variables.
	(a)	4	(b)	8
	(c)	2	(d)	6
50.	The v	velocity profile is approximated by a c	ubic p	parabola $\frac{\mathbf{u}}{\mathbf{U}} = \frac{3}{2} \left(\frac{\mathbf{y}}{\delta} \right)^2 - \frac{1}{2} \left(\frac{\mathbf{y}}{\delta} \right)^3$, where the
		acement thickness for the profile is	3	0 2 (0)
	(a)	$\frac{3}{8}\delta$	(b)	5/8 δ
	(c)	11/8 δ	(d)	None of the above
51.	For th	ne viscous flow the coefficient of fricti	on is	given by
011	(a)	f = 8/Re	(b)	f = 16/Re
	(c)	f = 32/Re	(d)	f = 60/Re
52.	The n	nathematical expression for lift force is		
	(a)	$F_L = C_L \cdot \rho AU$	(b)	$F_L = C_L \cdot \frac{\rho U^2}{2} \cdot A$
	(c)	$F_L = C_L \cdot \rho U^2 \cdot A$		None of the above
		ations used have usual meaning.)		
53.	Local	acceleration in fluid is due to		
	(a)	unsteady nature of flow	(b)	non uniformity of flow
	(c)	turbulence in flow	(d)	irrotational nature of flow
54.			ws th	rough a pipe of 5 cm diameter. The flow
	(a)	ical at a velocity of about 0.2 m/s	(b)	2 m/s
	(c)	2.5 m/s	(d)	4 m/s
Serie	s-A	12	2	SES-06

<i>55.</i>				ickness of laminar boundary layer varies as
	` /	1/2	(b)	$x^{4/5}$
	(c) x	c ^{1/2}	(d)	x^2
56.	Using	Blasius Equation, the friction factor f	or tur	bulent flow through pipes varies as
20.	_	I/Re	(b)	1/Re ^{0.5}
	` /	1/Re ^{0.33}	(d)	1/Re ^{0.25}
	(0)		(0)	
<i>5</i> 7.		-		elocity potential and stream function are
		by ϕ and ψ respectively. Which one o		
	` /	$\nabla^2 \phi = 0 \ , \ \nabla^2 \psi = 0$		$\nabla^2 \phi \neq 0 \ , \nabla^2 \psi = 0$
	(c) V	$\nabla^2 \phi = 0 \ , \ \nabla^2 \psi \neq 0$	(d)	$\nabla^2 \phi \neq 0$, $\nabla^2 \psi \neq 0$
58.	For the	e laminar flow through a circular	pipe	the ratio of maximum velocity and the
	_	e velocity is		
	` /	1.5	(b)	2.0
	(c) 2	2.5	(d)	None of the above
59.	The se	paration of boundary layer takes plac	e in ca	ase of
	-	negative pressure gradient	(b)	positive pressure gradient
	(c) z	zero pressure gradient	(d)	none of the above
60	г 1			
60.		number is defined as the ratio of nertia force to viscous force	(b)	inertia force to gravity force
	` /	nertia force to viscous force	(d)	inertia force to gravity force
	(0)	nertia force to classic force	2	merta force to pressure force
61.		er blow in pipes occurs due to		2
		sudden sharp bends	(b)	sudden contraction
	(c) s	sudden stoppage of flow	(d)	sudden release of fluid from pipe
62.	A meta	al piece having density exactly equal	to the	e density of a fluid is placed in the liquid.
		etal piece will		,
	(a) s	sink to the bottom		
	` ′	Toat on the surface		
		will be partly immersed		
	(d) v	will be wholly immersed		
63.	Which	of the following head loss is signific	ant in	a pipe flow?
		Loss of head due to gradual contraction		1 1
	(b) I	Loss of head due to friction		
		Loss of head due to sudden enlargeme		
	(d) I	Loss of head due to sudden contraction	n	
64.	The res	sultant force on a floating body will a	ıct	
	(a) v	vertically upwards through centre of b	ouoya	ncy
		vertically downwards through centre		byancy
		vertically upwards through meta centr		
	(d) v	vertically downwards through meta co	entre	

65.	Which of the following is a Mechanical Gauge? (a) Diaphragm gauge (b) Dead weight pressure gauge (c) Bourdon tube pressure gauge (d) All the above
66.	A box of rectangular base 2m × 3m contains gasoline (Sp. Gravity 0.7) upto a height of 5m. The force on the base and two vertical surfaces, 2m × 5m and 3m × 5m respectively. (a) 206 kN, 258 kN and 172 kN (b) 21 kN, 17.5 kN and 26.3 kN (c) 258 kN, 172 kN and 206 kN (d) 206 kN, 172 kN and 258 kN
67.	Match the following and choose the correct alternatives: List – I List – II
	A. Froude number 1. $p/\rho U^2$ B. Mach number 2. $U/(gd)$ C. Webber number 3. U/\sqrt{gd} D. Euler number 4. $\rho LU^2/\sigma$ 5. $\frac{-p}{\rho^2 U^2}$ 6. U/c
	(c = velocity of sound) (Notations used have usual meaning) Codes:
	A B C D (a) 3 6 3 5 (b) 3 6 4 1 (c) 2 4 5 2 (d) 2 6 1 5
68.	The continuity equation in fluid mechanics is a mathematical statement embodying the principle of (a) conservation of energy (b) conservation of mass (c) conservation of momentum (d) none of above
69.	Reynold's number is defined as the ratio of inertia force to (a) gravity force (b) pressure force (c) elastic force (d) viscous force
70.	An ideal fluid is defined as the fluid which (a) is compressible (b) is incompressible (c) is incompressible and inviscid (d) has negligible surface tension
71.	The velocity distribution in laminar flow through a circular pipe follows the (a) Linear law (b) Parabolic law (c) Logarithmic law (d) None of the above

72.	Kine	matic similarity between model and pr	ototyp	be means the similarity of
	(a)	forces	(b)	shape
	(c)	motions	(d)	discharge
73.		Darcy-Weisbach friction factor which is is dependent on Roughness height, diameter and velocity Relative roughness, diameter and visc Relative roughness, velocity and visc Roughness height, diameter, velocity	city cosity osity	
74.		velocity distribution in turbulent flow oundary surface and the friction veloci parabolic law hyperbolic law		function of the distance y measured from , and follows a logarithmic law linear law
75.	The j (a) (b) (c) (d)	parameters which determine the friction. Froude number and relative roughness. Froude number and Mach number Reynolds number and relative roughness. Mach number and relative roughness.	ness	or for turbulent flow in a rough pipe are
76.	(a) (c)	Hoss in sudden expansion is given by $ \frac{V_1^2 - V_2^2}{2g} $ $ \frac{(V_1 - V_2)^2}{2g} $ ations used have usual meanings)	(b) (d)	$\frac{(V_1 - V_2)^3}{2g}$ $\frac{2(V_1^2 - V_2)^2}{g}$
77				han and an afahaning ha hishandhan
77.	In or	der to have a continuous flow through _ measured above the hydraulic grade		hon, no portion of the pipe be higher than
	(a)	10m	(b)	10.33m
	(c)	5.5m	(d)	7.75m
78.	Bour	ndary layer on a flat plate is called lam	inar h	oundary layer if Reynold's number is less
70.	than	idally layer on a riar place is curied land	inai o	oundary rayer is registed a number to less
	(a)	2000	(b)	4000
	(c)	5×10^5	(d)	None of the above
79.	Surfa (a) (b) (c) (d)	Cohesion is a phenomenon due to Cohesion only Viscous forces only Adhesion between liquid and solid m Difference in magnitude between the		
80.		ontainer carrying water is moved in m/s ² . The angle of inclination of free v 14.03° 45°		izontal direction with an acceleration of surface to the horizontal is 67.8° 0°

81.	. The rate of heat transfer through a hollow cylinder of inner and outer radii r_1 and r_2 ,			
	-	ectively, depends on		
	(a)	difference of radii, $(r_2 - r_1)$	(b)	
	(c)	product of radii, (r ₁ r ₂)	(d)	ratio of radii, $\left(\frac{r_2}{r_1}\right)$
82.	The 1	rate of heat transfer from a solid su	urface to a	fluid is obtained from
	(a)	Newton's law of cooling	(b)	Fourier's law
	(c)	Kirchhoff's law	(d)	Stefan's law
83.		e radiation shield is placed betwee mount of heat radiated becomes	en two infi	nite parallel radiating plane surfaces, then
	(a)	one third	(b)	one fourth
	(c)	half	(d)	none of the above
84.	Whic	th pair, out of the following alternation List – I	ntives, is no List – II	ot correctly matched?
	(a)	Fourier's law -	Conduction	on S
	(b)		Convection	
	(c)	Stephan-Boltzman law -	Radiation	
	(d)	Kirchoff's law -	Radiation	
			Convection	
85.		•		r coefficient then the critical thickness of
	insul (a)	ation for a cylinder, which will make	(b)	h/k
	(a) (c)	2k/h		h/2k
06			7	
86.		exchanger, then LMTD is ex		erences at inlet and at exit of the
	meat			$(\Lambda T_{\cdot} - \Lambda T_{\cdot})$
	(a)	$\frac{\Delta T_{i} - \Delta T_{e}}{\ln \Delta T_{i} / \Delta T_{e}}$	(b)	$\ln \left(\frac{\Delta T_i - \Delta T_e}{1 \Delta T_i / \Delta T_e} \right)$
		1		(1 6)
	(c)	$\frac{\ln(\Delta T_{i} - \Delta T_{e})}{\Delta T_{i}/\Delta T_{e}}$	(d)	$\frac{\Delta T_{i} - \Delta T_{e}}{\ln (\Delta T_{i} + \Delta T_{e})/2}$
07		1 0		
87.				ximum possible rate of heat transfer then,
		exchanger effectiveness is equal to	(b)	Q/Q_{max}
	(u)	V _{max}		$Q \leftarrow Q$
	(c)	$Q_{\text{max}} - Q$ Q_{max}/Q	(d)	$\frac{Q_{\text{max}} + Q}{2}$
QQ	If M	- volumo A - surface area h		
88.		ific heat, then the time constant of		film conductance, $p = density$ and $C = density$ ouple is equal to
	_	** ~		X 7
	(a)	<u>VρC</u> Ah	(b)	$\frac{Vp}{CAh}$
	(c)	$\frac{Ah}{V\rho C}$	(4)	$\frac{\text{VC}}{\rho \text{Ah}}$
	(0)	VρC	(u)	ρAh

89.	fluid		ughout	only a phase change takes place, and one the heat exchanger. In terms of number heat exchanger would be
	(d)	cannot be worked out as heat capacit	ties are	unknown
90.		W/m ² K and heat capacity of both ho		n ² . The overall heat transfer coefficient is old streams are 1000 W/K. The value of 500 0.2
91.		n opaque plane surface, the irradiation of the description of the desc		iocity and emissive power are 20,12 and ace is 0.4 1.0
92.	The F (a) (c)	Prandtl number will be the lowest for water Aqueous solution	(b) (d)	liquid metal lube oil
93.	ratio ratio (a)	of 1:2. If the same temperature difference of heat flow Q_1/Q_2 will be $1/2$	fference (b)	l area have thermal conductivities in the e is maintained across the wall faces, the
	(c)	2	(d)	4
94.	The c (a) (c)	ritical thic <mark>kness of ins</mark> ulation for sphe k/h h/2k	(b) (d)	given by k/4h 2k/h
95.		is the equivalent emissivity for a sivity = 0.4) in a very large enclosure 0.5 0.2		heat exchange between a small body sivity = 0.5)? 0.4 0.1
96.	In the (a) (c)	e lumped parameter model, the tempe linear exponential	rature v (b) (d)	variation with time is cubic sinusoidal
97.	What (a) (c)	is the value of shape factor for two info 0	inite pa (b) (d)	rallel surfaces separated by a distance x ? ∞ x
Serie	s-A	2	22	SES-06

98.		Nusselt number in natural convection per and	n hea	t transfer is a function of fluid Prandtl
	(a)	Stanton Number	(b)	Biot Number
	(c)	Grashoff Number	(d)	Reynolds Number
99.	The v	ralue of Prandtl Number of air is about		
,,,	(a)	0.1	(b)	0.4
	(c)	0.7	(d)	1.1
100.	(emis	sivity = 0.9) maintained at 400 K and	300 K	
	(a)	992 464	(b)	893 567
	(c)	404	(d)	307
101.		atio of thickness of thermal boundary is equal to $(P_r)^n$ where n is	layer	to thickness of hydrodynamic boundary
	(a)	- 1/3	(b)	2/3
	(c)	1	(d)	-1
102.		_ will radiate heat to a large extent.		55
	(a)	Black polished surface	(b)	White rough surface
	(c)	White polished surface	(d)	Black rough surface
103.	Addit	tion of fin to the surface increases the l	neat tr	ansfer if $\sqrt{\frac{hA}{kP}}$ is
	(a)	equal to 1	(b)	greater than 1
	(c)	less than 1	(d)	greater than 1 but less than 2
	(Nota	tions used have usual meaning)		
104.	Choo	se correct order of metals for increasing	ig con	ductivity:
	(a)	Cu, Al, Fe, Ag	(b)	Fe, Al, Cu, Ag
	(c)	Al, Fe, Cu, Ag	(d)	Cu, Ag, Al, Fe
105.		given heat flow and for the same thic be maximum for		the temperature drop across the material
	(a)	Copper	(b)	Steel Refractory brick
	(c)	Glass wool		
106.	Reyno	olds analogy states that (St is the	stanto	n number and C_{fx} is the skin friction
		icient)		C
		$St = \frac{C_{fx}}{4}$	(b)	$St = \frac{C_{fx}}{2}$
	(c)	$St = \sqrt{C_{fx}}$	(d)	$St = 2 C_{fx}$
107.	therm		the di	B are made of materials such that their afference of temperature on two sides is a through A to that through B is
	(a)	6	(b)	4
	(c)	2	(d)	1
c •		_		SES 04

108.		adial heat transfer rate through hollow er radius:	v cylir	nder increases as the ratio of outer radius
	(a)	decreases	(b)	increases
	(c)	constant	(d)	none of the above
109.	Metal	s are good thermal conductors since		
	(a)	they have free electrons.	(b)	their atoms are relatively closer.
	(c)	their surfaces reflect.	(d)	their atoms are of larger size.
110.	In for	ced convection, Nusselt number is a fu	unctio	n of
	(a)	Reynolds number and dynamic viscos	-	
	(b)	dynamic viscosity and Prandtl numbe		
	(c) (d)	Prandtl number and Reynolds number Reynolds number and thickness of bo		y laver
	(u)	Reynolds humber and thickness of 50	undar	y layer
111.		n-Boltzmann law is expressed as		6
	(a)	$Q = \sigma AT^4$	(b)	$Q = \sigma A^2 T^4$
	(c)	$Q = \sigma AT^2$	(d)	$Q = AT^4$
112.	The s	shape factor for radiation heat transfe	er of a	a long cylinder of radius r ₁ enclosed by
		er concentric long cylinder of radius r		
	(a)	0.25	(b)	0.50
	(c)	0.75	(d)	1.0
112	Hoot :	transfer rate		
113.	(a)	will be higher in turbulent flow		0
	(b)	will be lower in turbulent flow		0
	(c)	will depend only on the fluid		
	(d)	will depend only on viscosity	2),	
114.	A the	rmal transparent body is characterised	by	
		absorptivity = 1	-	reflectivity =1
	(c)	absorptivity = reflectivity =0	(d)	none of the above
115	The t	ime constant of the thermocounle is th	ne time	e required by a thermocouple to reach the
110.		ving value of initial temperature differ		
	(a)	63.2%	(b)	65%
	(c)	68%	(d)	70.2%
116.	In a le	ong cylindrical rod of radius R and fo	r a sui	face heat flux of 90, the uniform internal
		generation rate is		
	(a)	290/R	(b)	290
	(c)	90/2 R	(d)	90/R ²
117.	Heat	transfer in liquids and gases is essentia	ally du	e to
	(a)	Conduction	(b)	Convection
	(c)	Radiation	(d)	Conduction and Radiation
Sorio	c A	26	c	SES-06

118.	The transition Reynolds number for flow over a flat plate is 5×10^5 . What is the distance from the leading edge at which transition will occur for flow of water with uniform velocity of 1 m/s? (For water $v = 0.858 \times 10^6$ m ² /s)			
	(a) (c)	1 m 43 m	(b) (d)	0.43 m 103 m
119.	produ	-	leaves	identical mass flow rate and specific heat s at 47 °C and cold fluid enters at 26 °C exchanger is 0.58 1.0
120.	condu	activity of the wall varies linearly w	ith te	s kept at 300 °C and 200 °C. Thermal imperature and its value at 300 °C and Then steady heat flux through the wall is 5 kW/m^2 3 kW/m^2
121.	For p (a) (c)	ractical purposes one Ton of refrigerat 3.48 kW 348 kW	ion mo (b) (d)	eans 34.8 kW None of these
122.	In a r (a) (c)	efrigeration system the refrigerant gain Compressor Expansion valve	(b) (d)	cat Condenser Evaporator
123.	In sur (a) (b) (c) (d)	mmer air conditioning system fresh air reduce load on equipment exercise easy control over equipment improve air quality by diluting odour reduce quantity of supply air		
124.	Temp (a) (c)	perature recorded by a thermometer whe dry bulb temperature dew point temperature	ich is (b) (d)	not affected by moisture is wet bulb temperature adiabatic saturation temperature
125.	Effec (a) (c)	ts of heat pump and refrigeration respectively compressor and condenser condenser and evaporator	ectivel (b) (d)	y are obtained at evaporator and condenser compressor and evaporator
126.	On a (a) (c)	psychrometric chart what does a vertice Adiabatic saturation Dehumdification	cal dov (b) (d)	wnward line represent ? Sensible cooling Humidification
127.		rigerator working on a reversed carnot onsumes 1kW, the heating effect will 1 1kW 5kW	-	has a COP of 4. If it works as heat pump 4kW 6kW

128.	The I	Bell-Coleman refrigeration cycle uses		
	(a)	Hydrogen	(b)	Carbon dioxide
	(c)	Air	(d)	Any inert gas
129.	The t	hrottling operation in a refrigeration cy	ycle is	carried out in
	(a)	Evaporator	(b)	Discharge valve
	(c)	Capillary tube	(d)	Expansion valve
130.	The c	chemical formula of Freon – 12 is		
	(a)	CClF,	(b)	CCl_2F_3
	(c)	CCl_2F_2	(d)	CC <i>l</i> F
131.	Dry i	ce is		
1011	(a)	solidified carbon dioxide		
	(b)	ice free from dissolved air and gases		
	(c)	ice free from impurities		6
	(d)	ice made from transparent distilled w	ater	0,3
	(4)	Tee made from transparent distince w		5
132.	Lithi	um bromide in vapour absorption refri	geratio	on system is used as
	(a)	refrigerant	(b)	cooling substance
	(c)	auxiliary refrigerant	(d)	absorbent
	` /	, c		
133.	comp		ter th	following state points. Enthalpy after rottling = 125 kJ/kg; enthalpy before tion is
	(a) (b)	3.5		01
	(c)	6		
	(d)	not possible to find with this data		
	(u)	not possible to find with this data	9	
134.	Vapo	our absorption system		
	(a)	gives noisy operation		
	(b)	gives quiet operation		
	(c)	requires little power consumption		
	(d)	cools below 0 °C		
135.	In me	echanical refrigeration system, the refri	igeran	t has the maximum temperature
	(a)	before expansion valve	.801	
	(b)	between compressor and condenser		
	(c)	between condenser and evaporator		
	(d)	between compressor and evaporator		
136.	If mo	pist air is passed over chemicals like sil	ica ge	el, the process which takes place is
- 1	(a)	humidification	- 6-	
	(b)	dehumidification		
	(c)	cooling and dehumidification		
	(d)	heating and dehumidification		

137.	The curved lines on a psychrometric chart indicate				
	(a)	relative humidity	(b)	specific humidity	
	(c)	dry bulb temperature	(d)	wet bulb temperature	
138.		e absorption refrigeration cycle, the ce is replaced by Liquid pump Generator Absorber and generator Absorber, liquid pump and generator		essor of vapour compression refrigeration	
139.	What	t is the storage temperature for milk?			
	(a)	4 °C	(b)	7 °C	
	(c)	2 °C	(d)	0.5 °C	
1.40	m.	1		9	
140.		design condition of temperature for wi 25 + 1 °C		27 °C	
	(a)	-	(b)		
	(c)	21 °C	(d)	none of the above	
141.	Which pair, out of following alternatives, is correctly matched. Normal boiling points of different refrigerants (List-I) are given in List-II. List - I List - II				
	(a)	R - 12 - -29.8 °C			
	(b)	NH ₃ - −33.35 °C		0,	
	(c)	R 134 a 24.15 °C			
	(d)	R 22 - 40.8 °C		•	
1.40	D				
142.		sure drop in capillary tube (used in ref	rigerat (b)	change in momentum	
	(a) (c)	both (a) & (b) above	(d)	none of the above	
	(0)	both (a) & (b) above	(u)	none of the above	
143.	. In a vapour absorption refrigeration system, the refrigeration temperature is − 15 °C and the generator temperature is 110 °C. If sink temperature is 55 °C, the maximum COP of the system will be				
	(a)		(b)	3.69	
	(c)	0.34	(d)	0.90	
144.	In ca	se of ejector–compression system the	nower	input is in the form of	
	(a)	electric power	(b)	heat	
	(c)	mechanical work	(d)	steam power	
145.	5. Due to suction vapour superheating in vapour compression cycle the COP increases in case of the following refrigerant :				
	(a)	R 22	(b)	NH ₃	
	(c)	R – 12	(d)	None of the above	
Serie	es-A	3	32	SES-06	

	3.	For good performance, a refrifgerant must have high critical pressure and low		
	4.	critical temperature. Refrigerants that are not miscible with oils, presents many problems.		
	5.	In flooded evaporators, the liquid refrigerant covers the entire heat transfer surface.		
	(a)	Statements 1, 2 and 5 are true		
	(b)	Statements 1, 2 and 3 are true		
	(c)	Statements 3, 4 and 5 are true		
	(d)	Statements 2, 4 and 5 are true		
147.	The f	function of solenoid valve in a refrigeration system is to		
	(a)	control the flow of refrigerant in suction line		
	(b)	control the flow of refrigerant through expansion valve		
	(c)	stop the flow of refrigerant when there is no load on the evaporator		
	(d)	stop the flow of refrigerant in liquid line when compressor stops		
148.	In co	oling and dehumidifying apparatus, the effect of the by pass factor is to		
	(a)	lower the ADP of the cooling coil		
	(b)	decrease the COP of the system		
	(c)	both (a) & (b) above		
	(d)	increase the ADP of the cooling coil and to improve the COP of the system		
149.	In cas	se of air conditioning of auditoriums, the cooling load which is predominant is		
	(a)	lighting load		
	(b)	occupancy load		
	(c)	load due to fans		
	(d)	load due to electronic equipments		
150.	When	n air is at saturated state, which pair, out of the given alternatives is not correctly matched?		
		List – II		
	(a)	Relative humidity - 100%		
	(b)	DBT - WBT		
	(c)	Degree of saturation - 1		
	(d)	Specific humidity - 0.01 kg w.v/kg d.a		
151.	The r	refrigerant commonly used for commertial ice plants is		
	(a)	Freon - 12 (b) NH ₃		
	(c)	CO ₂ (d) Air		
152	The k	orine is an aqueous solution of in water.		
102.	(a)	Calcium chloride (b) Sodium chloride		
	(c)	Calcium carbonate (d) Sodium carbonate		
Serie	Series-A 34 SES-06			

146. Go through the following statements and choose the correct alternative :1. Wet compression increases COP of ammonia vapour compression system.

in case of ammonia refrigerant.

2.

Use of liquid-vapour heat exchanger in vapour compression system decreases COP

153.	The v (a) (c)	vet bulb depression is zero when relati zero 75%	ive hu (b) (d)	midity equals 50% 100%
154.		reversible refrigerators are arranged in COP of the composite refrigeration systems. 1.5		es and their COP are 4 and 5 respectively. yould be 2 4.5
155.		eal refrigerator is operating between a cerature of -3 °C. If the machine is func		ser temperature of 37 °C and an evaporator as a heat pump, its COP will be
	(a) (c)	6 7	(b) (d)	6.75 7.75
156.		h refrigerant would you choose for 8 pressor?	300 TF	R air conditioning plant using centrifugal
	(a)	NH ₃	(b)	CO ₂
	(c)	CFC 11	(d)	CFC 114
157.	Finne (a) (b) (c) (d)	ed evaporators are used on air condition equalize air flow over the cooling con- prevent moisture carry over extend the effective area of the cooling increase the dehumidifying capacity	il surfa	ace
158.	Which one of the following is not a desirable property of a good refrigerant? (a) low specific heat (b) high specific volume of vapour (c) large latent heat at evaporator pressure (d) high critical temperature			
159.	Dew (a) (c)	point is the temperature at which the convolume pressure	densat (b) (d)	ion begins when the air is cooled at constant entropy enthalpy
160.		one ton capacity water cooler, water efic heat of water as 4.16 kJ/kg K, the cooler of		at 30 °C at the rate of 200 lit/hour. Taking remperature of water will be 6.3 °C 15 °C
161.	Perfo (a) (c)	rmance of an air compressor at high a better same	ltitude (b) (d)	s as compared to that at sea level is inferior depends on type of compressor
162.	A wa (a) (c)	ter turbine is usually designed for the N, T and Q P, H and Q	given (b) (d)	values of P, T and Q P, H and N
Serie	s-A	3	6	SES-06

163.	The cetane number of automotive diesel fuel used in India lies in which of the following ranges ?			
	(a)	30 - 40	(b)	41 - 50
	(c)	51 – 60	(d)	61 - 70
164.		variable speed S.I. engine, the maximu		-
	(a)	speed	(b)	brakepower
	(c)	indicated power	(d)	volumetric efficiency
165.	The k	knocking tendency in C.I. engines incre	eases	with
	(a)	decrease of compression ratio		
	(b)	increase of compression ratio		
	(c)	increasing the temperature of inlet air	•	
	(d)	increasing cooling water temperature		
166.	The i	gnition quality of fuels for S.I. engines	s is de	termined by
	(a)	Cetane number	(b)	Octane number
	(c)	Calorific value	(d)	Volatility of the fuel
167.	In a 4	4 – cylinder petrol engine, the standard	firing	order is
		1 - 2 - 3 - 4	(b)	1-4-3-2
	(c)	1-3-2-4	(d)	1 - 3 - 4 - 2
160	The	estic of health normal to indicated normal		LC vacina is called
100.		ratio of brake power to indicated power		/ // V = /
	(a)	mechanical efficiency		thermal efficiency
	(c)	volumetric efficiency	(a)	relative efficiency
169.	A cei	ntrifuga <mark>l pump l<mark>ifts water throug</mark>h a he</mark>	eight h	and delivers it at a velocity V_d . The loss
	of he	at through piping is h _f . The gross lift is	S	
			<i>a</i> >	V_d^2
	(a)	$h + h_f$	(b)	$h_f + \overline{2g}$
		V. ²		V_1^2
	(c)	$h + h_f + \frac{d}{2g}$	(d)	$h_{f} + \frac{V_{d}}{2g}$ $h + \frac{V_{d}^{2}}{2g}$
		$h + h_f$ $h + h_f + \frac{V_d^2}{2g}$		5
		process of supercharging is meant for		
	(a)	raising exhaust pressure		
	(b)	increasing density of intake air		
	(c)	increasing quantity of fuel going into	cylino	der
	(d)	providing air for cooling		
171.	Whic	ch of the following is not a high pressu	re boil	ler?
	(a)	Lancashire boiler	(b)	La-mont boiler
	(c)	Benson boiler	(d)	Loeffler boiler

172.	For a	reaction turbine, specific flow is given	n by fo	ollowing expression:
	(a)	Q/D_1^2 H	(b)	$Q/D_1\sqrt{H}$
	(c)	$Q/D_1^2 H^{3/2}$	(d)	$Q/D_1^2\sqrt{H}$
173.	3. Mean diameter of runner of a pelton turbine is 200mm and least diameter of jet is 1 Calculate the jet ratio and number of buckets.			200mm and least diameter of jet is 1 cm.
	(a) (c)	20, 25 20, 40	(b) (d)	200, 115 20, 45
174	, ,	type impeller centrifugal pump is use	` '	·
1746	(a) (b) (c)	water mixture of water, sand, pebbles and c sewage		
	(d)	liquids lighter than water		
175.		pecific speed of a turbine is expressed	as	
	(a)	$\frac{N\sqrt{P}}{H^{5/4}}$	(b)	$\frac{N H^{5/4}}{\sqrt{P}}$
	(c)	$\frac{N\sqrt{P}}{\rho H^{5/4}}$	(d)	$\frac{\text{N }\sqrt{\text{P}}}{(\text{gH})^{5/4}}$
176.	Iso-o	ctane content in a fuel for S.I. Engines		4.09
	(a)	retards auto-ignition	(b)	accelerates auto-ignition
	(c)	does not affect auto ignition	(d)	none of the above
177.				as compared to that for petrol engine is
	(a) (c)	lower same for same output	(b) (d)	higher none of the above
	, ,			
178.		internal combustion engine, firing ord crank shaft design	_	-
	(a) (c)	number of cylinders	(d)	none of the above
179.	Willi	am's law gives a straight line graph be	tween	<u> =</u>
	(a)	pressure of steam volume of steam	(b)	temperature of steam
	(c)	volume of steam	(d)	indicated horse power
180.		done by prime mover to run the compisothermal		r is minimum if the compression is adiabatic
	(a) (c)	isentropic	(b) (d)	polytropic
181.		_	io of o	outlet whirl velocity to the blade velocity
	18 kno (a)	own as work factor	(b)	slip factor
	(a) (c)	degree of reaction	(d)	pressure coefficient
a •			•	
Serie	S-A	40	U	SES-06

182.		a an impeller has backward curved ase in flow rate, Euler head H increases remains constant	vanes (b) (d)	in a centrifugal blower, then with an decreases none of the above
183.	Work (a) (b) (c) (d)	ratio is a guide in the determination of the size of the gas turbine overall efficiency of the turbine mechanical efficiency of the turbine compressor efficiency	f	
184.	for hi (a) (c)	gh boiler efficiency the feed water is h recuperator super heater	eated (b) (d)	by convective heater economiser
185.	In par (a) (c)	rson's steam turbine, steam expands in nozzles only partly in nozzles and partly in blades	(b)	blades only none of the above
186.	Pistor (a) (c)	n rings are generally made of following cast iron aluminium	g mate (b) (d)	rial. mild steel carbon steel
187.		degree of reaction for a turbomachina and in fixed blades 12 kJ/kg, would be 66.6% 40%		which heat drop in moving blades is 8 150% 166.6%
188.	Speci (a) (b) (c) (d)	fic speed of a turbine is defined as the produces unit power at unit discharge produces unit power at unit head delivers unit discharge at unit head delivers unit discharge at unit power		of the turbine which
189.		single stage impulse turbine having no conditions is given by cos α/2 cos α	ozzle a (b) (d)	ingle α , maximum blade efficiency under $\cos^2 \alpha/2$ $\cos^2 \alpha$
190.	Bleed (a) (b) (c) (d)	ling in turbine means: leakage of steam steam doing no useful work removal of condensed steam extracting steam for preheating feed v	vater	
191.	Why: (a) (b) (c) (d)	intercooling in multistage compressors To minimize the work of compression To cool the air delivery To cool the air during compression None of these		ne?

192.	Cavitation depends upon (a) vapour pressure which is function of temperature (b) absolute pressure or barometric pressure (c) suction pressure (Hs) which is height of runner outlet above tail race level. (d) all the above			
193.	(a) 3 -	pression ratio for a practical diesel of 5 – 15	engin (b) (d)	e usually lies in the range. $6-8$ $16-22$
194.	much ca system?	in be the maximum thermal effici		C and temperature in depth is 4 °C, how of Ocean Thermal Conversion (OTEC)
		.7%	(d)	none of the above
195.	(a) pro (b) sin (c) ve	I turbine is essure compounded impulse turbine mple single wheel impulse turbine locity compounded impulse turbine mple single wheel reaction turbine		5 135565
196.	(a) tar		(b) (d)	axial flow reaction turbine mixed flow reaction turbine
197.	(a) Lo (b) Co (c) Se	f the following statements is not true ow full load thermal efficiency ostly machines If starting unit ow in its response to acceleration	e for	gas turbines ?
198.	(a) Le (b) No (c) Hi	f the following statements is not consistent thermal pollution of moving parts gh operation efficiency of direct conversion of heat into elect		
199.	full or d loads. W (a) Pe	lesign load. The performance of manual field in the following turbines is best	nany	ak efficiency) when they are operated at turbines deteriorate considerably at part ted for operation at part loads. ? Francis Turbine Kaplan Turbine
200.	the runne (a) is (b) is a (c) is		(insta	alled above tail race level), the pressure at

44

SES-06

Series-A

